
MIPS Assembly Programmming
Robert Winkler

Version 0.9.3, 2021-07-10: Beta

Table of Contents
Info . Ê1

Chapter 0: Hello World . Ê2

Prereqs . Ê2

System Setup . Ê2

Handy Resources . Ê3

Hello World . Ê3

Building and Running . Ê5

Conclusion . Ê5

Chapter 1: Data . Ê7

Arrays . Ê8

Chapter 2: System Calls . Ê10

Examples . Ê11

Chapter 3: Branches and Logic . Ê15

Practice . Ê16

Conclusion . Ê25

Chapter 4: Loops . Ê26

Looping Through Arrays . Ê28

Conclusion . Ê33

Chapter 5: Functions and the MIPS Calling Convention . Ê34

Functions . Ê34

The Convention . Ê35

Conclusion . Ê42

Chapter 6: Floating Point Types . Ê43

Floating Point Registers and Instructions . Ê43

Practice . Ê44

Getting Floating Point Literals . Ê45

Branching . Ê45

Functions . Ê46

Conclusion . Ê47

Chapter 7: Tips and Tricks . Ê48

Formatting . Ê48

Misc. General Tips . Ê48

Constants . Ê49

Macros . Ê50

Switch-Case Statements . Ê52

Command Line Arguments . Ê55

Delayed Branches and Delayed Loads . Ê60

No Pseudoinstructions Allowed . Ê61

Info
Copyright © 2021 Robert Winkler

Licensed under Creative Commons .

This book is available online in both HTML and PDF form.

The repo for the book, where you can get the code referenced and report any errors (submit an
issue or even a pull request) is here .

If youÕre interested in contacting me regarding MIPS tutoring or any other business request related
to the book, you can reach me at mips@robertwinkler.com . :source-highlighter: pygments

1

http://robertwinkler.com
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.robertwinkler.com/projects/mips_book/mips_book.html
http://www.robertwinkler.com/projects/mips_book/mips_book.pdf
https://github.com/rswinkle/mips_book
mailto:mips@robertwinkler.com

Chapter 0: Hello World
In which we lay the groundwork for the rest of the bookÉ

Prereqs
While someone with no programming experience could probably learn MIPS from this book, it is
definitely preferable to have at least some experience in a higher level imperative programming
language. I say imperative, because programming in assembly is the antithesis of functional
programming; everything is about state, with each line changing the state of the CPU and
sometimes memory. Given that, experience in functional languages like Lisp, Scheme etc. are less
helpful than experience in C/C++, Java, Python, Javascript etc.

Of all of the latter, C is the best, with C++ being a close second because at least all of C exists in C++.
There are many reasons C is the best prior experience when learning assembly (any assembly, not
just MIPS), including the following:

¥ pointers, concepts and symmetry of "address of" and "dereference" operators

¥ pointer/array syntax equivalence

¥ stack allocation as the default

¥ manual memory management, no garbage collector

¥ global data

¥ rough equivalence in structure of a C program and an assembly program (vs. say Java)

¥ pass by value

There is some overlap between those and there are probably more, but you can see that most other
languages that are commonly taught as first languages are missing most, if not all of those things.

Even C++, which technically has all of them, being a superset of C, is usually taught in a way that
mostly ignores all of those things. They teach C++ as if itÕs Java, never teaching the fundamentals. In
any case this is getting into my problems with CS pedagogy of the last 20 years based on my
experience as a CS major myself ('12) and as a programming tutor helping college students across
the country since 2016, and I should save it for a proper essay/rant sometime.

Long story short, I use C code and C syntax to help explain and teach MIPS. IÕll try to provide
enough explanation regardless of past experience as best I can.

System Setup
As I tell all of my tutoring students, if youÕre majoring in CS or anything related I highly recommend
you use Linux. ItÕs easier in every way to do dev work on Linux vs Windows or Mac. Many
assignments require it, which often necessitates using a virtual machine (which is painful,
especially on laptops) and/or ssh-ing into a school Linux server, which is also less than ideal. In
general, youÕll have to learn how to use the unix terminal eventually and will probably use it to
some extent in your career so it also makes sense to get used to it asap.

2

That being said, Windows does now have WSL so you can get the full Ubuntu or Debian or Fedora
etc. terminal based system on Windows without having to setup a real virtual machine (or dealing
with the slowdown that would cause). IÕve even heard that theyÕll get support for Linux GUI
programs soon.

MacOS on the other hand, is technically a Unix based system and you can use their terminal and
install virtually any program from there using Macports or Homebrew or similar.

There are 3 commonly used MIPS simulators that I know of:

¥ SPIM is probably the oldest and is terminal only

¥ QtSpim is a GUI front end for SPIM

¥ MARS is a Java GUI based simulator with dozens of extra syscalls, syntactic sugar and features
like graphics, memory mapped I/O, etc.

SPIM and QtSpim are in the Debian/Ubuntu repos so you can install them with the following

$ sudo apt install qtspim spim

You can probably find them in the repos for other distros too and install them similarly.

If itÕs not in your repos or youÕre on Windows (and not using WSL) or Mac you can download them,
and MARS at these addresses

¥ MARS

¥ QtSpim

Handy Resources
There are a few references that you should bookmark (or download) before you get started. The
first is the MIPS Greensheet . ItÕs likely you already have a physical copy of this as itÕs actually the
tearout from the Patterson and Hennessey textbook Computer Architecture and Design that is
commonly used in college courses.

The second thing is the list of syscalls from the MARS website.

I recommend you download/bookmark both and keep them open while working because youÕll be
referencing them often to remind yourself which instructions and syscalls you have available and
how they work.

Hello World
LetÕs start with the classic hello world program, first in C, then in MIPS, and go over all the pieces in
overview. You can copy paste these into your editor of choice (mine being neovim), or use the files
in the associated repo to follow along.

3

https://courses.missouristate.edu/KenVollmar/mars/download.htm
https://sourceforge.net/projects/spimsimulator/files/
https://raw.githubusercontent.com/rswinkle/mips_book/master/references/MIPS_Green_Sheet.pdf
https://amzn.to/3zN71KP
https://courses.missouristate.edu/KenVollmar/mars/Help/SyscallHelp.html

1 #include <stdio.h>
2
3 int main()
4 {
5 printf("Hello World! \n ");
6 return 0;
7 }

It is pretty self explanatory. You have to include stdio.h so you can use the function printf (though
in the real world IÕd use puts here), the function main is the start of any C/C++ program, which is a
function that returns an int. We call printf to display the string "Hello World!\n" to the user and
then return 0 to exit. Returning 0 indicates success and there were no errors.

You can compile and run it in a linux/unix terminal as shown below. You can substitute clang or
another compiler for gcc if you want.

$ gcc -o hello hello.c
$./hello
Hello World!

Now, the same program in MIPS:

Ê1 .data
Ê2 hello: .asciiz "Hello World!\n"
Ê3
Ê4 .text
Ê5 main:
Ê6 li $v0, 4 # load immediate, v0 = 4 (4 is print string system call)
Ê7 la $a0, hello # load address of string to print into a0
Ê8 syscall
Ê9
10 li $v0, 10 # exit syscall
11 syscall

The .data section is where you declare global variables, which includes string literals as in this case.
WeÕll cover them in more detail later.

The .text section is where any code goes. Here we declare a single label main:, indicating the start
of our main function.

We then put the number 4 in the $v0 register to select the print string system call. The print string
system call takes one argument, the address of the string to print, in the $a0 register. We do that on
the next line. On line 8, we call the system call using the syscall instruction.

Finally we call the exit system call which takes no arguments and exits the program.

Again, weÕll cover system calls in a later chapter. This is just an intro/overview so donÕt worry if

4

some things arenÕt completely clear. This chapter is about getting you up and running, not really
about teaching anything specific yet.

Building and Running
Now that we have our hello world MIPS program, how do we run it? Well the easiest and quickest [1]

way is of course to do it on the command line, which can be done like this for spim:

$ spim -file hello.s
SPIM Version 8.0 of January 8, 2010
Copyright 1990-2010, James R. Larus.
All Rights Reserved.
See the file README for a full copyright notice.
Loaded: /usr/lib/spim/exceptions.s
Hello World!

or this for MARS:

$ java -jar ~/Mars4_5.jar hello.s
MARS 4.5 Copyright 2003-2014 Pete Sanderson and Kenneth Vollmar

Hello World!

The name of your MARS jar file may be different [2], so be sure to use the correct name and path. For
myself, I keep the jar file in my home directory so I can use tilde to access it no matter where I am.
You can also copy it into your working directory (ie wherever you have your source code) so you
donÕt have to specify a path at all. There are lots of useful command line options that you can use [3],
some of which weÕll touch on later.

Running the jar directly on the command line works even in the DOS command line though IÕve
never done it and itÕs probably not worth it.

Alternatively, you can start up MARS or QtSpim like a normal GUI application and then load your
source file. MARS requires you to hit "assemble" and then "run". Whereas with QtSpim you only
have to hit "run".

QtSpim does let you start and load the file in one step from the command line

$ qtspim hello.s

but there is no way to simply run it with out starting the GUI, which makes sense since the whole
point is to be a GUI wrapper around spim.

Conclusion
Well, there you have it, you have written and run your first MIPS program. Another few chapters

5

and you will have no trouble with almost anything you would want to do in MIPS, whether for a
class, or on your own for fun. :source-highlighter: pygments

[1] Starting up the MARS GUI (an old Java app) is often annoyingly slow

[2] Some schools/professors have their own versions with extra features and other improvements over the old version available on
the MARS website

[3] https://courses.missouristate.edu/KenVollmar/mars/Help/MarsHelpCommand.html

6

https://courses.missouristate.edu/KenVollmar/mars/Help/MarsHelpCommand.html

Chapter 1: Data
In MIPS, you can declare global variables in the .data section.

At a minimum this is where you would declare/define any literal strings your program will be
printing, since virtually every program has at least 1 or 2 of those.

When declaring something in the .data section, the format is

variable_name: .directive value(s)

where whitespace between the 3 is arbitrary. The possible directives are listed in the following
table:

Table 1. MIPS data types

Directive Size C equivalent

.byte 1 char

.half 2 short

.word 4 int, all pointer types

.float 4 float

.double 8 double

.ascii NA char str[5] = "hello"; (no '\0')

.asciiz NA char str[] = "hello"; (includes the '\0')

.space NA typeless, unitinialized space, can be used for any
type/array

As you can see itÕs pretty straightforward, but there are a few more details about actually using
them so letÕs move onto some examples.

Say you wanted to convert the following simple program to MIPS:

Ê1 #include <stdio.h>
Ê2
Ê3 int main()
Ê4 {
Ê5 char name[30];
Ê6 int age;
Ê7 printf("What's your name and age? \n ");
Ê8 scanf("%s %d", name, &age);
Ê9 printf("Hello %s, nice to meet you! \n " , name);
10 return 0;
11 }

The first thing you have to remember is that when converting from a higher level language to
assembly (any assembly) is that what matters is whether itÕs functionally the same, not that

7

everything is done in exactly the same way. In this instance, that means realizing that your literal
strings and the name array become globals in MIPS.

Ê1 .data
Ê2 age: .word 0 # can be initialized to anything
Ê3
Ê4 ask_name: .asciiz "What's your name and age?\n"
Ê5 hello_space: .asciiz "Hello "
Ê6 nice_meet: .asciiz ", nice to meet you!\n"
Ê7
Ê8 name: .space 30
Ê9
10 .text
11
12 # main goes here

As you can see in the example, we just extract all the string literals and the character array name and
declare them as MIPS globals. One thing to note is the second printf . Because it prints a variable,
name, using the conversion specifier, we break the literal into pieces around that. Since there is no
built-in printf function in MIPS, you have to handle printing variables yourself with the
appropriate system calls.

Arrays
Declaring arrays is just an extension of declaring single variables. Obviously strings are special
cases, that can be handled with .ascii or .asciiz for literals, but for other types or user inputed
strings how do we do it?

Well the first way, which was demonstrated in the snippet above is to use .space to just declare an
array of the necessary byte size. Keep in mind that the size is specified in bytes not elements, so it
only matches for character arrays. For arrays of ints/words, floats, doubles etc. youÕd have to
multiply by the sizeof(type).

"But, .space only lets you declare uninitialized arrays, how do I do initialized ones?"

Well, itÕs just an extension of declaring a single variable of that type. You specify all the values,
comma separated. This actually gives you another way to declare a string or a character array,
though I canÕt really think of a reason youÕd want to. You could declare a .byte array and list all the
characters individually. See below for examples.

1 int a[20];
2 double b[20];
3 int c[10] = { 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 };
4 char d[3] = { 'a' , 'b' , 'c' }

becomes

8

1 .data
2 a: .space 80
3 b: .space 160
4 c: .word 9,8,7,6,5,4,3,2,1,0
5 d: .byte 'a', 'b', 'c'

9

Chapter 2: System Calls
We mentioned system calls (aka syscalls from now on) in chapter 0 when we were going over our
"Hello World" program, but what exactly are they?

Essentially, they are the built in functions of a operating system, in this case, the simple operating
system of the MIPS simulators. They provide access to all the fundamental features, like input and
output to/from both the console and files, allocating memory, and exiting. That covers all the 17
syscalls supported by spim, but MARS supports many more, for things from playing MIDI sounds, to
getting a random number, to creating GUI dialogs. [4]

NOTE

Except for the MARS or SPIM specific chapters/sections, IÕll be sticking to code
compatible with both throughout this book, meaning we only use the first 17
syscalls, and donÕt get to use some of the syntactic sugar available in MARS, or any
SPIM specific features either.

Table 2. SPIM supported syscalls

Name $v0 Arguments Result

print integer 1 $a0 = integer to print

print float 2 $f12 = float to print

print double 3 $f12 = double to print

print string 4 $a0 = address of string

read integer 5 $v0 = integer read

read float 6 $f0 = float read

read double 7 $f0 = double read

read string 8 $a0 = address of input buffer
$a1 = buffer size

works like CÕs fgets

sbrk 9 $a0 = size in bytes to allocate $v0 = address of allocated memory
(sbrk is basically malloc but there is
no free)

exit 10 program terminates

print character 11 $a0 = character to print (ascii value)

read character 12 $v0 = character read

open file 13 $a0 = address of filename
$a1 = flags
$a2 = mode

$v0 = file descriptor (negative if
error)

read from file 14 $a0 = file descriptor
$a1 = address of input buffer
$a2 = max characters to read

$v0 = number of characters read, 0
for end-of-file, negative for error

10

Name $v0 Arguments Result

write to file 15 $a0 = file descriptor
$a1 = address of output buffer
$a2 = number of characters to write

$v0 = number of characters written,
negative for error

close file 16 $a0 = file descriptor

exit2 17 $a0 = termination result program terminates, returning
number in $a0 (only meaningful
when run in the terminal, ignored
in GUI)

As you can see, itÕs just the basics. You can read or write the different types, do file I/O using calls
identical to POSIX functions (open, read, write, close; see man pages), allocate memory, and exit.
Even so, theyÕre sufficient to build anything you want.

So, what does that table mean? How do these actually work?

The process is, put the number for the syscall you want in $v0, fill in the appropriate arguments, if
any, and then do the syscall:

1 li $v0, 1 # 1 is print integer
2 li $a0, 42 # takes 1 arg in a0, the number to print
3 syscall # actually execute syscall

You can think of the above as print_integer(42); . LetÕs look at an actual program that uses a few
more syscalls next.

Examples

11

Ê1 #include <stdio.h>
Ê2
Ê3 int main()
Ê4 {
Ê5 int age;
Ê6 int height;
Ê7 char name[50];
Ê8 printf("What's your name? ");
Ê9 fgets(name, 50, stdin);
10
11 printf("Hello %s" , name);
12
13 printf("How old are you? ");
14 scanf("%d", &age);
15
16 printf("Enter your height in inches: ");
17 scanf("%d", &height);
18
19 printf("Your age + height = %d \n " , age + height);
20
21 return 0;
22 }

IÕm using fgets() instead of scanf("%s", name) because fgets works the same as the read string
syscall (8).

Ê1 .data
Ê2
Ê3 name: .space 50
Ê4
Ê5 nameprompt: .asciiz "What's your name? "
Ê6 hello_space: .asciiz "Hello "
Ê7 how_old: .asciiz "How old are you? "
Ê8 ask_height: .asciiz "Enter your height in inches: "
Ê9 ageplusheight: .asciiz "Your age + height = "
10
11
12 .text
13 main:
14 li $v0, 4 # print string system call
15 la $a0, nameprompt # load address of string to print into a0
16 syscall
17
18 li $v0, 8 # read string
19 la $a0, name
20 li $a1, 50
21 syscall
22
23 li $v0, 4

12

24 la $a0, hello_space
25 syscall
26
27 la $a0, name # note 4 is still in $v0
28 syscall
29
30 # don't print a newline here because
31 # one will be part of name
32
33 li $v0, 4
34 la $a0, how_old
35 syscall
36
37 li $v0, 5 # read integer
38 syscall
39 move $t0, $v0 # save age in t0
40
41 li $v0, 4
42 la $a0, ask_height
43 syscall
44
45 li $v0, 5 # read integer
46 syscall
47 add $t0, $t0, $v0 # t0 += height
48
49
50 li $v0, 4
51 la $a0, ageplusheight
52 syscall
53
54 li $v0, 1 # print int
55 move $a0, $t0 # a0 = age + height
56 syscall
57
58 # print newline
59 li $v0, 11 # print char
60 li $a0, 10 # ascii value of '\n'
61 syscall
62
63
64 li $v0, 10 # exit syscall
65 syscall

There a few things to note from the example.

We donÕt declare global variables for age or height. We could, but thereÕs no reason to since we
have to have them in registers to do the addition anyway. So we just copy/save height to $t0 so we
can use $v0 for overwrite $v0 for 2 more syscalls, then add age to t0.

This is generally how it works. Use registers for local variables unless required to do otherwise.
WeÕll cover more about register use when we cover the MIPS calling convention.

13

Another thing is when we print their name, we donÕt put 4 in $v0 again because it is still/already 4
from the lines above. Unless the syscall says it writes to $v0 you can assume it is unmodified.

Lastly, many people will declare a string "\n" and use print string to print a newline, but itÕs easier
to just use the print char syscall as we do just before exiting. :source-highlighter: pygments

[4] https://courses.missouristate.edu/KenVollmar/mars/Help/SyscallHelp.html

14

https://courses.missouristate.edu/KenVollmar/mars/Help/SyscallHelp.html

Chapter 3: Branches and Logic
We canÕt go much farther in our MIPS programming journey without covering branching. Almost
every non-trivial program requires some logic, even if itÕs just a few if or if-else statements. In other
words, almost every program requires branching, a way to do code a instead of code b, or to do
code a only if certain conditions are met.

You already know how to do this in higher level languages, the aforementioned if statement. In
assembly itÕs more complicated. Your only tool is the ability to jump to a label on another line based
on the result of various comparisons. The relevant instructions are listed in the following table:

Table 3. MIPS branching related instructions (and pseudoinstructions)

Name Opcode Format Operation

Branch On Equal beq beq rs, rt, label if (rs == rt) goto label

Branch On Not Equal bne bne rs, rt, label if (rs != rt) goto label

Branch Less Than blt blt rs, rt, label if (rs < rt) goto label

Branch Greater Than bgt bgt rs, rt, label if (rs > rt) goto label

Branch Less Than Or Equal ble ble rs, rt, label if (rs ! rt) goto label

Branch Greater Than Or Equal bge bge rs, rt, label if (rs >= rt) goto label

Set Less Than slt slt rd, rs, rt rd = (rs < rt) ? 1 : 0

Set Less Than Immediate slti slt rd, rs, imm rd = (rs < imm) ? 1 : 0

Set Less Than Immediate Unsigned sltiu slt rd, rs, imm rd = (rs < imm) ? 1 : 0

Set Less Than Unsigned sltu sltu rd, rs, imm rd = (rs < imm) ? 1 : 0

You can see the same information and more (like which ones are pseudoinstructions) on the MIPS
greensheet. [5]

There are additional pseudoinstructions in the form of beq/bne/blt/bgt/ble/bge + 'z' which are just
shortcuts to compare a register against 0, ie the 0 register.

So the following:

Ê beq $t0, $0, label
Ê bne $t1, $0, label
Ê blt $t2, $0, label

would be equivalent to:

Ê beqz $t0, label
Ê bnez $t1, label
Ê bltz $t2, label

15

Note $0 is the same as zero and is just the hard coded 0 register. IÕll cover registers in more detail in
the chapter on functions and the calling conventions.

One final thing is that labels have the same naming requirements as C variables and functions.
They must start with a letter or underscore and the rest can be letters, underscores, and digits.

Practice
The rest of this chapter will be going over many examples, looking at snippets of code in C and
translating them to MIPS.

Basics

LetÕs start with the most basic if statement. The code in and after the if statement is arbitrary.

1 if (a > 0) {
2 a++;
3 }
4 a *= 2;

Now in MIPS, letÕs assume that a is in $t0 . The tranlation would look like this:

1 ble $t0, $0, less_eq_0 # if (a <= 0) goto less_eq_0
2 addi $t0, $t0, 1 # a++
3 less_eq_0:
4 sll $t0, $t0, 1 # a *= 2 (shifting left by n is multiplying by 2^n)

There are a few things to note in this example. The first is that in assembly we test for the opposite
of what was in the if statement. This will always be the case when jumping forward because (if we
want to keep the same order of code) we can only jump over a block of code, whereas in C we fall
into the block if the condition is true. In the process of mentally compiling a bit of C to assembly, it
can be helpful to some to change to jump based logic first. For example the previous C would
become:

1 if (a <= 0)
2 goto less_eq_0;
3 a++;
4 less_eq_0:
5 a *= 2;

This is obviously still valid C but matches the branching behavior of assembly exactly. You can see I
put comments for the equivalent C code in my assembly; it helps with readability to comment every
line or group of lines that way.

The second thing to notice is how we handled the multiplication. This has nothing to do with
branching but is something weÕll touch on multiple times throughout the book. Your job when

16

acting as a human compiler is to match the behavior . You are under no obligation to match the
structure or operations of the higher level code exactly (unless your professor stupidly forces you
to).

Given that, it is in your best interest to change and rearrange things in order to simplify the
assembly as much as possible to make your life easier. Generally speaking, this also tends to result
in more performant code, since using fewer instructions and fewer branches (the most common
outcomes) saves execution time.

In this case, the standard mult instruction (from the green sheet) would have required 3
instructions, and even the mul instruction (that does seem to be supported everywhere but is not on
the green sheet) would take 2:

1 li $t1, 2
2 mult $t0, $t1
3 mflo $t0 # a *= 2
4
5 # or
6
7 li $t1, 2
8 mul $t0, $t0, $t1 # a *= 2

Given that, when multiplying or dividing by a power of 2 itÕs common practice, and just common
sense, to use sll or sra . This is true in all assembly languages because multiplication (and division)
is a relatively costly operation so using shifts when you can saves performance even if you didnÕt
actually save instructions.

Ok, letÕs look at an if-else example. Again the actual code is arbitrary and weÕre assuming a and b
are in $t0 and $t1 respectively

1 if (a > 0) {
2 b = 100;
3 } else {
4 b -= 50;
5 }

You could do it something like these two ways

17

Ê1 bgt $t0, $0, greater_0 # if (a > 0) goto greater_0
Ê2 addi $t1, $t1, -50 # b -= 50
Ê3 j less_eq_0
Ê4 greater_0:
Ê5 li $t1, 100 # b = 100
Ê6 less_eq_0:
Ê7
Ê8 # or
Ê9
10 ble $t0, $0, less_eq0 $ if (a <= 0) goto less_eq_0
11 li $t1, 100 # b = 100
12 j greater_0
13 less_eq_0:
14 addi $t1, $t1, -50 # b -= 50
15 greater_0:

You can see how the first swaps the order of the actual code which keeps the actual conditions the
same as in C, while the second does what we discussed before and inverts the condition in order
keep the the blocks in the same order. In both cases, an extra unconditional branch and label is
necessary so we donÕt fall through the else case. This is inefficient and wasteful, not to mention
complicates the code unecessarily. Remember how our job is to match the behavior, not the exact
structure? Imagine how we could rewrite it in C to simplify it:

1 b -= 50;
2 if (a > 0) {
3 b = 100;
4 }

which becomes

1 addi $t1, $t1, -50 # b -= 50;
2 ble $t0, $0, less_eq_0 # if (a <= 0) goto less_eq_0
3 li $t1, 100 # b = 100
4 less_eq_0:

That is just one simple example of rearranging code to make your life easier. In this case, we are
taking advantage of what the code is doing to make a default path or default case. Obviously,
because of the nature of the code subtracting 50 has to be the default because just setting b to 100
loses the original value in case we were supposed to subtract 50 instead. In cases where you canÕt
avoid destructive changes (like where the condition and the code are using/modifying the same
variable), you can use a temporary variable; i.e. copy the value into a spare register. You still save
yourself an unecessary jump and label.

Compound Conditions

These first 2 examples have been based on simple conditions, but what if you have compound

18

conditions? How does that work with branch operations that only test a single condition? As you
might expect, you have to break things down to match the logic using the operations you have.

LetÕs look at and first. Variables a, b, and c are in t0, t1, and t2.

1 if (a > 10 && a < b) {
2 c += 20;
3 }
4 b &= 0xFF;

So whatÕs our first step? Well, just like previous examples we need to test for the opposite when we
switch to assembly, so we need the equivalent of

1 if (!(a > 10 && a < b))
2 goto no_add20;
3 c += 20;
4 no_add20:
5 b &= 0xFF;

Well, that didnÕt help us much, we still donÕt know how to handle that compound condition. In fact
weÕve just made it more complicated. If only there were a way to convert it to or instead of and .
Why would we want that? Because, while both and and or in C allow for short circuit evaluation
(where the result of the whole expression is known early and the rest of expression is not
evaluated), with or , it short circuits on success while and short circuits on failure. What does that
mean? It means that with or , the whole expression is true the second a single true term is found,
while with and the whole expression is false the second a single false term is found.

LetÕs look at the following code to demonstrate:

Ê1 if (a || b || c) {
Ê2 something;
Ê3 }
Ê4
Ê5 // What does this actually look like if we rewrote it to show what it's
Ê6 // actually doing with short circuit evaluation?
Ê7
Ê8 if (a) goto do_something;
Ê9 if (b) goto do_something;
10 if (c) goto do_something;
11 goto dont_do_something;
12
13 do_something:
14 something;
15
16 dont_do_something:
17
18 // You can see how the first success is all you need:
19 // Compare that with and below

19

20
21 if (a && b && c) {
22 something;
23 }
24
25 if (a) {
26 if (b) {
27 if (c) {
28 something;
29 }
30 }
31 }
32 // which in jump form is
33
34 if (a)
35 goto a_true;
36 goto failure;
37 a_true :
38 if (b)
39 goto b_true;
40 goto failure;
41
42 b_true :
43 if (c)
44 goto c_true :
45 goto failure;
46
47 c_true :
48 something;
49 failure :
50
51 // Man that's ugly and overcomplicated and hard to read
52 // But what if we did this instead:
53
54 if (!a) goto dont_do_something;
55 if (!b) goto dont_do_something;
56 if (!c) goto dont_do_something;
57
58 something;
59
60 dont_do_something:
61
62 // Clearly you need all successes for and. In other words
63 // to do and directly, you need state, knowledge of past
64 // successes. But what about that second translation of and?
65 // It looks a lot like or?

YouÕre exactly right. That final translation of and is exactly like or .

It takes advantage of De MorganÕs laws. [6] For those of you who havenÕt taken a Digital Logic course
(or have forgotten), De MorganÕs laws are 2 equivalencies, a way to change an or to an and , and

20

vice versa.

They are (in C notation):

!(A || B) == !A && !B

!(A && B) == !A || !B

Essentially you can think of it as splitting the not across the terms and changing the logical
operation. The law works for arbitrary numbers of terms, not just 2:

(A && B && C)
is really
((A && B) && C)
so when you apply De Morgan's Law recursively you get:
!((A && B) && C) == !(A && B) || !C == !A || !B || !C

LetÕs apply the law to our current example. Of course the negation of comparisons is just covering
the rest of the number line so:

1 if (a <= 10 || a >= b))
2 goto no_add20;
3 c += 20;
4 no_add20:
5 b &= 0xFF;

which turns into:

1 li $t9, 10
2 ble $t0, $t9, no_add20 # if (a <= 10) goto no_add20
3 bge $t0, $t1, no_add20 # if (a >= b) goto no_add20
4
5 addi $t2, $t2, 20 # c += 20
6 no_add20:
7 andi $t1, $t1, 0xFF # b &= 0xFF

See how that works? Or 's do not need to remember state. Just the fact that you reached a line in a
multi-term or expression means the previous checks were false, otherwise youÕd have jumped. If
you tried to emulate the same thing with an and , as you saw in the larger snippet above, youÕd need
a bunch of extra labels and jumps for each term.

What about mixed compound statements?

1 if (a > 10 || c > 100 && b >= c)
2 printf("true \n ");
3
4 b |= 0xAA;

21

Well, the first thing to remember is that && has a higher priority than || , which is why most
compilers these days will give a warning for the above code about putting parenthesis around the
&& expression to show you meant it (even though itÕs completely legal as is).

So with that in mind, letÕs change it to jump format to better see what we need to do. While weÕre at
it, letÕs apply De MorganÕs law to the &&.

Ê1 if (a > 10)
Ê2 goto do_true;
Ê3 if (c <= 100)
Ê4 goto done_if;
Ê5 if (b < c)
Ê6 goto done_if;
Ê7 do_true :
Ê8 printf("true \n ");
Ê9
10 done_if :
11 b |= 0xAA;

This one is trickier because we donÕt flip the initial expression like normal. Instead of jumping over
the body which would require testing for the opposite, we jump to the true case. We do this because
we donÕt want to have multiple print statements and it lets us fall through the following conditions.
We would need multiple print statements because failure for the first expression is not failure for
the entire expression. HereÕs how it would look otherwise:

Ê1 if (a <= 10)
Ê2 goto check_and;
Ê3 printf("true \n ");
Ê4 goto done_if;
Ê5 check_and:
Ê6 if (c <= 100)
Ê7 goto done_if;
Ê8 if (b < c)
Ê9 goto done_if;
10
11 printf("true \n ");
12
13 done_if :
14 b |= 0xAA;

That is harder to read and has both an extra print and an extra jump.

So letÕs convert the better version to MIPS (a,b,c = $t0 , $t1 , $t2):

22

Ê1 .data
Ê2 true_str: .asciiz "true\n"
Ê3
Ê4 .text
Ê5 li $t8, 10 # just get the necessary literals in some unused regs
Ê6 li $t9, 100
Ê7
Ê8 bgt $t0, $t8, do_true # if (a > 10) goto do_true
Ê9 ble $t2, $t9, done_if # if (c <= 100) goto done_if
10 blt $t1, $t2, done_if # if (b < c) goto done_if
11
12 do_true:
13 li $v0, 4 # print string
14 la $a0, true_str # address of str in a0
15 syscall
16
17 done_if:
18 ori $t1, $t1, 0xAA # b |= 0xAA

If-Else Chain

Ok, letÕs look at a larger example. LetÕs say youÕre trying to determine a studentÕs letter grade based
on their score. WeÕre going to need a chain of if-else-ifÕs to handle all cases. Assume score is
declared and set somewhere before.

Ê1 char letter_grade;
Ê2 if (score >= 90) {
Ê3 letter_grade = 'A' ;
Ê4 } else if (score >= 80) {
Ê5 letter_grade = 'B' ;
Ê6 } else if (score >= 70) {
Ê7 letter_grade = 'C' ;
Ê8 } else if (score >= 60) {
Ê9 letter_grade = 'D' ;
10 } else {
11 letter_grade = 'F' ;
12 }
13
14 printf("You got a %c \n " , letter_grade);
15 }

With chains like these, you following everything weÕve learned before, it comes out looking like this
(assuming score is $t0 and letter_grade is $t1):

23

Ê1 .data
Ê2 grade_str: .asciiz "You got a "
Ê3
Ê4 .text
Ê5 li $t1, 70 # letter_grade default to 'F' ascii value
Ê6
Ê7 li $t2, 90
Ê8 blt $t0, $t2, not_a # if (score < 90) goto not_a
Ê9 li $t1, 65 # leter_grade = 'A'
10 j grade_done
11
12 not_a:
13 li $t2, 80
14 blt $t0, $t2, not_b # if (score < 80) goto not_b
15 li $t1, 66 # leter_grade = 'B'
16 j grade_done
17
18 not_b:
19 li $t2, 70
20 blt $t0, $t2, not_c # if (score < 70) goto not_c
21 li $t1, 67 # leter_grade = 'C'
22 j grade_done
23
24 not_c:
25 li $t2, 60
26 blt $t0, $t2, grade_done # if (score < 60) goto grade_done
27 li $t1, 68 # leter_grade = 'D'
28
29 grade_done:
30 li $v0, 4 # print str
31 la $a0, grade_str
32 syscall
33
34 li $v0, 11 # print character
35 move $a0, $t1 # char to print
36 syscall
37
38 move $a0, 10 # print '\n'
39 syscall

You can see how we set a default value and then test for the opposite of each condition to jump to
the next test, until we get one that fails (aka was true in the original C condition) and set the
appropriate grade.

You can arrange chains like this in either direction, it doesnÕt have to match the order of the C code.
As long as it works the same, do whatever makes the code simpler and more sensible to you.

24

Conclusion
Branching and logic and learning to translate from higher level code to assembly is something that
just takes a lot of practice but eventually itÕll become second nature. WeÕll get more practice in the
chapter on looping which naturally also involves branching.

One final note, thereÕs really no reason to use the slt family of opcodes unless your professor
requires it, ie he says you canÕt use pseudoinstructions so youÕre left with beq, bne, j and the slt ops.
IÕll show how you can code without using pseudoinstructions in a later chapter.

[5] https://inst.eecs.berkeley.edu/~cs61c/resources/MIPS_Green_Sheet.pdf

[6] https://en.wikipedia.org/wiki/De_Morgan%27s_laws

25

https://inst.eecs.berkeley.edu/~cs61c/resources/MIPS_Green_Sheet.pdf
https://en.wikipedia.org/wiki/De_Morgan%27s_laws

Chapter 4: Loops
"Insanity is doing the same thing over and over again and expecting
different results."

Ñ Unknown, Often misattributed to Albert Einstein

Before we get into the MIPS, I want to cover something that may be obvious to some but may have
never occurred to others. Any loop structure can be converted to any other (possibly with the
addition of an if statement). So a for can be written as a while and vice versa. Even a do-while can
be written as a for or while loop. LetÕs look at some equivalencies.

Ê1 for (int i= 0; i<a; i++) {
Ê2 do_something;
Ê3 }
Ê4
Ê5 int i = 0;
Ê6 while (i < a) {
Ê7 do_something;
Ê8 i++;
Ê9 }
10
11 int i = 0;
12 if (i < a) {
13 do {
14 do_something;
15 i++;
16 } while (i < a);
17 }
18 // you could also have an if (i >= a) goto loop_done; to jump over do-while

I think in general, when writing assembly, it can help to think more in terms of while or do-while
rather than for because the former more resemble what the assembly looks like in terms of what
goes where. So just like in the last chapter, where we would think of the if-else statements in "jump-
form" or "branch-form", we can do the same here, converting for to while in our head as an
intermediary step before going to assembly.

Speaking of "jump-form", lets apply it to the loop above:

26

Ê1 int i= 0;
Ê2 if (i >= a)
Ê3 goto done_loop;
Ê4 loop :
Ê5 do_something;
Ê6 i++
Ê7 if (i < a)
Ê8 goto loop;
Ê9
10 done_loop:

You can see how that starts to look more like assembly. Another thing to note is that unlike with if
statements where we test for the opposite to jump over the block of code, when youÕre doing the
test for a loop at the bottom, like a do-while loop, it is unchanged from C, because you are jumping
to continue the loop. If you put the test at the top it becomes inverted, and you put an unconditional
jump at the bottom:

1 int i= 0;
2 loop :
3 if (i >= a)
4 goto done_loop;
5 do_something;
6 i++
7 goto loop :
8
9 done_loop:

In general itÕs better to test at the bottom, both because itÕs closer to C with the matching condition,
and because, when you know the loop is going to execute at least once, it requires only one jump +
label, rather than 2 because you can forgo the the initial if check:

Ê1 for (int i= 0; i< 10; i++)
Ê2 do_something;
Ê3
Ê4 // becomes
Ê5
Ê6 int i= 0;
Ê7 loop :
Ê8 do_something;
Ê9 i++
10 if (i < a)
11 goto loop;

Ok, now that weÕve got the theory and structure out of the way, letÕs try doing a simple one in MIPS.

27

1 int sum = 0;
2 for (int i= 0; i< 100; i++) {
3 sum += i;
4 }

ThatÕs about as basic as it gets, add up 1 to 99.

1 li $t0, 0 # sum = 0
2 li $t1, 1 # i = 1 we can start at 1 because obviously adding 0 is
Ê pointless
3 li $t2, 100
4 loop:
5 addi $t0, $t0, $t1 # sum += i
6 addi $t1, $t1, 1 # i++
7 blt $t1, $t2, loop # while (i < 100)

Ok I donÕt think thereÕs much point in doing any more without getting to what loops are most often
used for, looping through data structures, most commonly arrays.

Looping Through Arrays
Looping and arrays go together for obvious reasons. An array is a sequence of variables of the same
type, almost always related in some way. Naturally, you want to operate on them all together in
various ways; sorting, searching, accumulating, etc. Given that the only way to do that is with loops,
in this section weÕll cover looping through arrays in various ways, and dealing with multi-
dimentional arrays.

1D Arrays

LetÕs pretend thereÕs an array int numbers[10]; filled with 10 random numbers.

1 int total = 0;
2 for (int i= 0; i< 10; i++) {
3 total += numbers[i];
4 }

There are several ways to do this. The first is the most literal translation.

28

Ê1 li $t0, 0 # total = 0
Ê2 li $t1, 0 # i = 0
Ê3 la $t2, numbers # t2 = numbers
Ê4 li $t3, 10
Ê5 sum_loop:
Ê6 sll $t4, $t1, 2 # t4 = i*sizeof(int) == i*4
Ê7 add $t4, $t4, $t2 # t4 = &numbers[i]
Ê8 lw $t4, 0($t4) # t4 = numbers[i]
Ê9 add $t0, $t0, $t4 # total += numbers[i]
10
11 addi $t1, $t1, 1 # i++
12 blt $t1, $t3, sum_loop # while (i < 10)

We initialize the relevant variables beforehand (numbers and 10 could be set every iteration but
thatÕs less efficient). Now whatÕs with the i*4? We already discussed using shifts to multiply and
divide by powers of 2 in a previous chapter, but here weÕre doing something that higher level
languages do automatically for you every time you do an array access. When you access the iÕth
element, under the hood it is multiplying i by the size of the type of the array and adding that
number of bytes to the base address and then loading the element located there.

If youÕre unfamiliar with the C syntax in the comments, & means "address of", so $t4 is being set to
the address of the iÕth element. Actually that C syntax is redundant because the the & counteracts
the brackets. In C adding a number to a pointer does pointer math (ie it multiplies by the size of the
items as discussed above). This means that the following comparison is true:

&numbers[i] == numbers + i

whichmeans that this is true too

&numbers[0] == numbers

The reason I use the left form in C/C++ even when I can use the right is it makes it more explicit and
obvious that IÕm getting the address of an element of an array. If you were scanning the code
quickly and saw the expression on the right, you might not realize thatÕs an address at all, it could
just be some mathematical expression (though the array name would hopefully clue you in if it was
picked well).

Anyway, back to the MIPS code. After we get the address of the element we want, we have to
actually read it from memory (ie load it). Since itÕs an array of words (aka 4 byte ints) we can use
load word, lw.

Finally we add that value to total , increment i , and perform the loop check.

Now, I said at the beginning that this was the most literal, direct translation (not counting the
restructuring to a do-while form). However, it is not my preferred form because itÕs not the simplest
nor the shortest.

Rather than calculate the element address every iteration, why not just keep a pointer to the
current element and iterate through the array with it? In C what IÕm suggesting is this:

29

1 int * p = &numbers[0];
2 int i = 0, total = 0;
3 do {
4 total += *p;
5 i++;
6 p++;
7 } while (i < 10);

In other words, we set p to point at the first element and then increment it every step to keep it
pointing at numbers[i] . Again, all mathematical operations on pointers in C deal in increments of the
byte syze of the type, so p++ is really adding 1*sizeof(int).

Ê1 li $t0, 0 # total = 0
Ê2 li $t1, 0 # i = 0
Ê3 la $t2, numbers # p = numbers
Ê4 li $t3, 10
Ê5 sum_loop:
Ê6 lw $t4, 0($t2) # t4 = *p
Ê7 add $t0, $t0, $t4 # total += *p
Ê8
Ê9 addi $t1, $t1, 1 # i++
10 addi $t2, $t2, 4 # p++ ie p += sizeof(int)
11 blt $t1, $t3, sum_loop # while (i < 10)

Now, that may not look much better, we only saved 1 instuction, and if we were looping through a
string (aka an array of characters, sizeof(char) == 1) we wouldnÕt have saved any. However, imagine
if we werenÕt using sll to do the multiply but mult . That would take 3 instructions, not 1. Even mul
would take 2. Remember we would have to use one of those if we were iterating through an array of
structures with a size that wasnÕt a power of 2.

But there is one more variant that you can use that can save a few more instructions. Instead of
using i and i<10 to control the loop, use p and the address just past the end of the array. In C it
would be this:

1 int * p = &numbers[0];
2 int * end = &numbers[10];
3 int total = 0;
4 do {
5 total += *p;
6 p++;
7 } while (p < end);

You could also use != instead of <. This is similar to using the .end() method on many C++ data
structures when using iterators. Now the MIPS version:

30

1 li $t0, 0 # total = 0
2 la $t2, numbers # p = numbers
3 addi $t3, $t2, 40 # end = &numbers[10] = numbers + 10*sizeof(int)
4 sum_loop:
5 lw $t4, 0($t2) # t4 = *p
6 add $t0, $t0, $t4 # total += *p
7
8 addi $t2, $t2, 4 # p++ ie p += sizeof(int)
9 blt $t2, $t3, sum_loop # while (p < end)

So we dropped from 10 to 7 instructions and even more if we had had to do mul or mult originally.
And this was just for a 1D array. Imagine if you had 2 or 3 indices you had to use to calculate the
correct offset. ThatÕs in the next section.

2D Arrays

The first thing to understand is whatÕs really happening when you declare a 2D array in C. The
contents of a 2D array are tightly packed, in row-major order, meaning that all the elements from
the first row are followed by all the elements of the second row and so on. What this means is that a
2D array is equivalent to a 1D array with rows*cols elements in the same order:

1 // The memory of these two arrays are identical
2 int array2d[2][4] = { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } };
3 int array1d[8] = { 1, 2, 3, 4, 5, 6, 7, 8 };

See the code example 2d_arrays.c for more details.

What this means is that when we declare a 2D array, itÕs basically a 1D array with the size equal to
the rows * columns. Also, when we loop through a 2D array, we can often treat it like a 1D array
with a single loop. So everything that we learned before applies.

LetÕs do an example.

Ê1 for (int i= 0; i<rows; i++) {
Ê2 for (int j= 0; j<cols; ++j) {
Ê3 array[i][j] = i + j;
Ê4 }
Ê5 }
Ê6
Ê7 // becomes
Ê8
Ê9 int r, c;
10 for (int i= 0; i<rows*cols; i++) {
11 r = i / cols;
12 c = i % cols;
13 array[i] = r + c;
14 }

31

https://raw.githubusercontent.com/rswinkle/mips_book/master/code/2d_arrays.c

So assuming rows and cols are in $a0 and $a1 (and nonzero), it would look like this:

Ê1 la $t0, array # p = &array[0]
Ê2 li $t1, 0 # i = 0
Ê3 mult $a0, $a1 # a0 = rows, a1 = cols
Ê4 mflo $t2 # t2 = rows * cols
Ê5 loop:
Ê6 div $t1, $a1
Ê7 mflo $t3 # r = i / cols
Ê8 mfhi $t4 # c = i % cols
Ê9 add $t3, $t3, $t4 # t3 = r + c
10
11 sw $t3, 0($t0) # array[i] = *p = r + c
12
13 addi $t1, $t1, 1 # i++
14 addi $t0, $t0, 4 # p++ (keep pointer in sync with i, aka p = &array[i])
15 blt $t1, $t2, loop # while (i < rows*cols)

You might ask if itÕs it worth it to convert it to a single loop when you still need the original i and j
as if you were doing nested loops. Generally, it is much nicer to avoid nested loops in assembly if
you can. There are many cases when you get the best of both worlds though. If youÕre doing a clear
for example, setting the entire array to a single value, thereÕs no need to calculate the row and
column like we did here. I only picked this example to show how you could get them back if you
needed them.

For comparison hereÕs the nested translation (while still taking advantage of the 1D arrangement of
memory and pointer iterators):

Ê1 la $t0, array # p = &array[0]
Ê2 li $t1, 0 # i = 0
Ê3 looprows:
Ê4 li $t2, 0 # j = 0
Ê5 loopcols:
Ê6 add $t3, $t1, $t2 # t3 = i + j
Ê7 sw $t3, 0($t0) # array[i][j] = *p = i + j
Ê8
Ê9 addi $t2, $t2, 1 # j++
10 addi $t0, $t0, 4 # p++ (keep pointer in sync with i and j, aka p =
Ê &array[i][j])
11 blt $t2, $a1, loopcols # while (j < cols)
12
13 addi $t1, $t1, 1 # i++
14 blt $t1, $a0, looprows # while (i < rows)

ItÕs a bit shorter but again, how much are those extra labels and branching worth? For me, this
oneÕs a toss up. On the other hand, either of the last 2 versions are better than the literal translation
below:

32

Ê1 la $t0, array # p = &array[0]
Ê2 li $t1, 0 # i = 0
Ê3 looprows:
Ê4 li $t2, 0 # j = 0
Ê5 loopcols:
Ê6 add $t3, $t1, $t2 # t3 = i + j
Ê7
Ê8 # need to calculate the byte offset of element array[i][j]
Ê9 mult $t1, $a1
10 mflo $t4 # i * cols
11
12 add $t4, $t4, $t2 # t4 = i * cols + j
13
14 sll $t4 $t4, 2 # t4 = (i * cols + j) * sizeof(int)
15 add $t4, $t4, $t0 $ t4 = &array[i][j] (calculated as array + (i*cols +
Ê j)*4)
16
17 sw $t3, 0($t4) # array[i][j] = i + j
18
19 addi $t2, $t2, 1 # j++
20 blt $t2, $a1, loopcols # while (j < cols)
21
22 addi $t1, $t1, 1 # i++
23 blt $t1, $a0, looprows # while (i < rows)

That chunk in the middle calculating the offset of every element? Not only is it far slower than just
iterating the pointer through the array, but you can imagine how much worse it would be for a 3D
array with 3 nested loops.

Conclusion
Hopefully after those examples you have a more solid understanding of looping in MIPS and how to
transform various loops and array accesses into the form that makes your life the easiest. There is
more we could cover here, like looping through a linked list, but I think thatÕs beyond the scope of
what weÕve covered so far. Perhaps in a later chapter. :source-highlighter: pygments

33

Chapter 5: Functions and the MIPS Calling
Convention
While IÕm sure everyone here probably knows what functions are, and weÕll cover them in
assembly shortly, you might be wondering what a "Calling Convention" is. In short, it is an
agreement between the caller and callee about how to treat/use certain registers. WeÕll get to the
why and how later.

Functions
In assembly, a function is just a label with a return instruction associated with it; because this is far
more ambiguous than a function in a higher level language, it is good practice to only have a single
return instruction associated with a function. [7] A comment above the label is also helpful. Together
those help you quickly see the start and end of the function.

1 void func1() {}

would be

1 # void func1()
2 func1:
3 # body goes here
4 jr $ra

As you can see my policy is to put a single line comment of the C prototype above label.

But how do you call a function in assembly? You use the instruction Jump and Link: jal func_label .
LetÕs change the hello world program from chapter 0 to call a function:

34

Ê1 .data
Ê2 hello: .asciiz "Hello World!\n"
Ê3
Ê4 .text
Ê5 main:
Ê6 jal hello_world
Ê7
Ê8 li $v0, 10 # exit syscall
Ê9 syscall
10
11
12 # void hello_world()
13 hello_world:
14 li $v0, 4 # print string system call
15 la $a0, hello # load address of string to print into a0
16 syscall
17
18 jr $ra

What jal actually does, is save the address of the next instruction to $ra and then do an
unconditional jump to the function label. So you could achieve the same results with the following:

Ê jal func

Ê # is equivalent to

Ê la $ra, next_instr
Ê j func
next_instr:

That would get tiring and ugly fast though, having to come up with unique labels for the next
instruction every time. You also might be confused about why the greensheet says jal saves PC+8 in
$ra instead of PC+4. The reason is that MIPS technically has delayed branching, i.e. a single
instruction after every branch instruction is executed before the jump actually happens. So jal
adds 8 instead of 4 to account for that extra instruction delay. However, every simulator weÕve
mentioned does non-delayed branching by default so you can ignore it.

The Convention
WeÕve gone as far as we can without starting to talk about registers and their purposes in functions.
You can think about registers as variables [8] that are part of the CPU. In this case, since weÕre dealing
with a 32-bit MIPS architecture, they are 32-bit (aka 4 bytes, 1 word) variables. Since theyÕre part of
the CPU, they exist for the life of the program and the whole program shares the same registers.

But how does that work? If all parts of the program use the same 32 registers, how does one
function not stomp all over what another was doing when they use them? In fact, how do functions
communicate at all? How do they pass arguments or return results? All these questions are solved

35

by deciding on a "Calling Convention". ItÕs different for different architectures and even different
operating systems on the same architecture. This is because different architectures have different
numbers of registers, and some registers like $ra have hardcoded uses. The op jal modifies $ra, and
$0 is a constant 0 and thereÕs no way to change either of those facts. That still leaves a lot of
flexibility about designing a calling convention. While they mostly match, youÕll find several
variations of MIPS calling conventions online. They usually differ in how they setup a stack frame.
The convention covered in this chapter is consistent with, and sufficient for, almost every college
course IÕve ever heard of.

Regardless, what matters, is that the calling convention works by setting rules (and guidelines) for
register use, and when/how to use the stack.

If youÕre unfamiliar with the runtime stack, itÕs exactly what it sounds like. ItÕs a Last-In-First-Out
(LIFO) data structure that you can use to store smaller values in a program. It grows in a negative
direction, so to allocate 12 bytes, you would subtract 12 from the stack pointer (in MIPS thatÕs $sp).

MIPS specifically designates certain registers to be used for passing arguments (at least the first 4),
others for return values, and others for misc. temporary or saved values. The rest are special use
registers like $ra.

The quickest way to summarize is to look at the table on the greensheet which is reproduced (with
some modifications) below:

Table 4. MIPS Registers and Uses

Name Number Use Preserved
Across a Call

$zero 0 Constant 0 N.A.

$at 1 Assembler Temporary (used to expand pseudo-
ops)

No

$v0-$v1 2-3 Function Results and Expression Evaluation No

$a0-$a3 4-7 Arguments No

$t0-$t7 8-15 Temporaries No

$s0-$s7 16-23 Saved Temporaries Yes

$t8-$t9 24-25 Temporaries No

$k0-$k1 26-27 Reserved for OS Kernel No

$gp 28 Global Pointer Yes

$sp 29 Stack Pointer Yes

$fp (or $s8) 30 Frame Pointer if necessary or can be another
saved reg

Yes

$ra 31 Return Address No

To summarize, you have 16 registers that can be used anytime for temporary values, though some
have special uses too (the v, a and t registers). You have 8 s registers that have to be saved on the
stack if you use them, plus $ra as well. The $zero register is obviously a special case.

36

The $sp register is technically preserved but not in the same way. Basically what you allocate
(subtract) you have to deallocate (add) before returning from a function, thus preserving the
original value.

You can ignore $at, $k0-$k1, $gp and most of the time $fp too. In 5 years of tutoring IÕve helped
students with MIPS from at least 2 dozen different colleges and I think IÕve only seen a professor
force his students to use $fp or pass more than 4 arguments twice. IÕve actually seen [9] register 30
referred to as $s8 rather than, or in addition to, $fp which shows you how rarely itÕs actually used
as a frame pointer.

Basic example

LetÕs start with something simple that doesnÕt use the stack.

int hello_name_number(char* name, int number)
{
Ê printf("Hello %s!\n", name);
Ê return number*10;
}

According to the convention that becomes:

.data
hello_space: .asciiz "Hello "
exclaim_nl: .asciiz "!\n"

.text
#int hello_name_number(char* name, int number)
hello_name_number:
Ê move $t0, $a0 # save name in t0 since we need a0 for the syscall

Ê li $v0, 4 # print string
Ê la $a0, hello_space
Ê syscall

Ê move $a0, $t0 # print name (v0 is still 4)
Ê syscall

Ê la $a0, exclaim_nl
Ê syscall

Ê addi $v0, $a1, 10 # return number+10
Ê jr $ra

Some things to note, syscalls are not function calls, so we can "save" $a0 in a t register and know
that itÕll still be there when the syscall is done. In the same way, we know that $v0 is still the same so
we donÕt have to keep setting it to 4 for print string. Lastly, to return a value, we just make sure that

37

value is in $v0 before returning.

Using the Stack

Ok, first letÕs establish the rules on when you have to use the stack (You can always use it for
arbitrary local variables, like a local array for example, but generally donÕt if you donÕt have a good
reason).

1. You call another function, ie youÕre a non-leaf function.

This means you have to save $ra on the stack at the very least, otherwise when you do your jr
$ra youÕd jump back into yourself (right after the last jal instruction). This does not apply to
main because you donÕt/shouldnÕt return from main, you should call the exit (or exit2) syscall
(10 or 17).

2. You need to save values across a function call (automatically includes reason 1).

This is fairly common for non-trivial functions. Obvious examples are calling a function in a
loop or loops (youÕd have to preserve the iterator(s)), and many recursive functions.

3. You run out of temporary registers and overflow into the s registers.

This is very rare. The most common reason this "happens" is people forget they have 10 t
registers instead of 8 like s registers and even if they remember that they forget they can also
use the a and v registers for temporaries. 16 is more than enough to handle pretty much any
function because you rarely need 17 discrete values at the same time.

Ok letÕs look at an example for the first two. Any example for the last rule would be prohibitively
large and complicated.

1 int non_leaf ()
2 {
3 func1();
4 return 42
5 }

This just calls the empty function discussed at the top of this chapter.

38

Ê1 #int non_leaf()
Ê2 non_leaf:
Ê3 addi $sp, $sp, -4 # space to save 1 register, $ra
Ê4 sw $ra, 0($sp) # store $ra in the newly allocated stack space
Ê5
Ê6 jal func1
Ê7
Ê8 li $v0, 42 # return 42
Ê9
10 lw $ra, 0($sp) # restore original $ra
11 addi $sp, $sp, 4 # pop the stack
12 jr $ra

The bit of code at the top and bottom of the function are called the prologue and epilogue
respectively for obvious reasons. We allocate 4 bytes on the stack by subtracting 4 (I add a negative
rather than subtract because I can copy-paste the line with a single character change for the
epilogue). Then we store the current $ra in that space at the new top of the stack. Then before we
exit we have to load it back and pop the stack.

If we didnÕt save and restore $ra we would jump to line 7 when we do our jr $ra and then weÕd be
in an infinite loop.

Next we have the second case, where we need to preserve regular local values across a function
call.

Ê1 void print_letters (char letter, int count)
Ê2 {
Ê3 for (int i= 0; i<count; i++) {
Ê4 putchar(letter);
Ê5 }
Ê6 putchar('\n');
Ê7 }
Ê8
Ê9 int save_vals()
10 {
11 for (int i= 0; i< 10; i++) {
12 print_letters('A' +i, i+ 1);
13 }
14 return 8;
15 }

That becomes this in mips:

39

Ê1 #void print_letters(char letter, int count)
Ê2 print_letters:
Ê3 ble $a1, $0, exit_pl # if (count <= 0) goto exit_pl
Ê4 li $v0, 11 # print character
Ê5 pl_loop:
Ê6 syscall
Ê7 addi $a1, $a1, -1 # count--
Ê8 bgt $a1, $0, pl_loop # while (count > 0)
Ê9
10 li $a0, 10 # '\n'
11 syscall
12
13 exit_pl:
14 jr $ra
15
16
17 #int save_vals()
18 save_vals:
19 addi $sp, $sp, -12
20 sw $ra, 0($sp)
21 sw $s0, 4($sp)
22 sw $s1, 8($sp)
23
24 li $s0, 0 # i = 0
25 li $s1, 10
26 sv_loop:
27 addi $a0, $s0, 65 # i + 'A'
28 addi $a1, $s0, 1 # i + 1
29 jal print_letters
30
31 addi $s0, $s0, 1 # i++
32 blt $s0, $s1, sv_loop # while (i < 10)
33
34 lw $ra, 0($sp)
35 lw $s0, 4($sp)
36 lw $s1, 8($sp)
37 addi $sp, $sp, 12
38 jr $ra

Notice that for print_letters, we not only convert the loop to a do-while, but we also use the
parameter count as the iterator to count down to 0. It saves us an instruction initializing an i .

Secondly, for save_vals, we save not only $ra because we call another function, but also two s
registers to save i and our stopping point. The second is not actually necessary. Because itÕs a
constant, we could just load 10 into a register right before the check every iteration of the loop.
Which version is better depends on several factors, like how long or complex the loop is, how many
times it executes, and of course personal preference.

40

Recursive Functions

LetÕs do a classic recursive function, the fibonacci sequence.

1 int fib (int n)
2 {
3 if (n <= 1)
4 return n;
5
6 return fib(n -2) + fib(n -1);
7 }

You can see how, at the very least, weÕll have to save $ra and n, because we need the original even
after the first recursive fib call. ItÕs not as obvious, but weÕll also have to save the return value of
the first call so weÕll still have it to do the addition after the second. You might think this would
require using two s regs, but does it? LetÕs seeÉ

Ê1 #int fib(int n)
Ê2 fib:
Ê3 addi $sp, $sp, -8
Ê4 sw $ra, 0($sp)
Ê5 sw $s0, 4($sp)
Ê6
Ê7 move $v0, $a0 # prepare to return n
Ê8 li $t0, 1
Ê9 ble $a0, $t0, exit_fib # if (n <= 2) goto exit_fib (ie return n)
10
11 move $s0, $a0 # save n
12
13 addi $a0, $a0, -2
14 jal fib # fib(n-2)
15
16 addi $a0, $s0, -1 # prep arg first so we can use s0 to save v0
17 move $s0, $v0 # save return of fib(n-2) in s0
18 jal fib # fib(n-1)
19
20 add $v0, $v0, $s0 # v0 = fib(n-1) + fib(n-2)
21
22 exit_fib:
23 lw $ra, 0($sp)
24 lw $s0, 4($sp)
25 addi $sp, $sp, 8
26 jr $ra

Notice how we donÕt have to save n any sooner than necessary, ie right before we have to use $a0 to
setup the first recursive call. Also, the ordering of lines 16 and 17 is important. We needed the
original n to calculate n-1 but once thatÕs in $a0 ready for the call, because we wonÕt need n again
afterward, we can now use $s0 to preserve the return value of the first call.

41

Some of you, if you were paying attention, might point out that you could save a few instructions of
performance if you moved the base case testing before the prologue as long as you put the exit label
after the epilogue. This is true, but IÕd recommend against it unless you were really trying to eke out
every last microsecond. ItÕs just nicer/cleaner to keep the prologue and epilogue as the first and last
things; theyÕre one more thing to catch your eye and help delineate where functions start and end.
Regardless, if youÕre curious, you can see that version, along with every other function in this
chapter in the included program calling.s .

Conclusion
While grasping the basics of a calling convention is not too difficult, it takes practice to get used to
it. There are many things that we havenÕt covered in this chapter, like how to pass more than 4
arguments, or use $fp or handle floating point arguments or return values. :source-highlighter:
pygments

[7] I do not agree with an ironclad "one return" policy in higher level languages. Sometime returning early results in cleaner code,
sometimes not. Similarly, `goto` is not evil and there are rare cases where using it creates the best code.

[8] Obviously the zero register is not really a variable. I never understood how people could say "const variable" with a straight
face, itÕs literally an oxymoron.

[9] ItÕs an old link , but not as old as SPIM so maybe using it for a frame pointer was added later

42

https://raw.githubusercontent.com/rswinkle/mips_book/master/code/calling.s
https://www.cs.uaf.edu/2000/fall/cs301/notes/notes/node66.html

Chapter 6: Floating Point Types
Up to this point we havenÕt really mentioned floating point values or instructions at all, except how
to declare them in the .data section and the syscalls for reading and printing them. There are two
reasons weÕve left them alone till now. First, they use a whole separate set of registers and
instructions. Secondly, and partly because of the first reason, most MIPS college courses do not ever
require you to know or use floating point values. Since this book is targeted at college students, if
you know you wonÕt need to know this feel free to skip this chapter.

Floating Point Registers and Instructions
While the greensheet contains a nice table for the normal registers it is completely lacking for the
floating point registers. There are 32 32-bit floating point registers. You can use them all for floats
but they are paired even-odd for doubles. In other words, you can only use even numbers for
doubles, because storing a double at $f0 actually uses $f0 and $f1 because it takes 64 bits/8 bytes.

As far as the calling conventions for floating point registers, it is actually hard to find anything
definitive even for the basics. Obviously you could make up your own but the float/double syscalls,
and the tiny code snippet in Patterson and Hennessy were at least consistent with this old website
so IÕll go with that. I have seen at least one course page where the prof wanted all float registers
preserved which seems excessive and ridiculous but profÕs are gonna prof.

Table 5. MIPS Floating Point Registers and Uses

Name Use Preserved Across a Call

$f0-$f2 Function Results No

$f4-$f10 Temporaries No

$f12-f14 Arguments No

$f16-f18 Temporaries No

$f20-f30 Saved Temporaries Yes

This table is based on doubles so it may look like itÕs skipping odd registers but theyÕre included
where the even theyÕre paired with is. So, for example you actually have 4 registers for float
arguments $f12 through $f15 but only 2 for doubles $f12 and f14 . Similarly you have 12 saved
registers for floats but 6 for doubles.

Most of the next table is actually on the Greensheet but not all of it and I thought it worth
reproducing here.

Table 6. MIPS floating point instructions (and pseudoinstructions)

Name Opcode Format Operation

Load Word to Coprocessor 1 lwc1 (or
l.s)

lwc1 ft, n(rs) F[ft] = M[R[rs]+n]

Store Word from Coprocessor 1 swc1 (or
s.s)

swc1 ft, n(rs) M[R[rs]+n] = F[ft]

43

https://amzn.to/3zN71KP

Name Opcode Format Operation

Load Double to Coprocessor 1 ldc1 (or l.d) ldc1 ft, n(rs) F[ft] = M[R[rs]+n]

F[ft+1] = M[R[rs]+n+4]

Store Double from Coprocessor 1 sdc1 (or
s.d)

sdc1 ft, n(rs) M[R[rs]+n] = F[ft]

M[R[rs]+n+4] = F[ft+1]

Move From Coprocessor 1 mfc1 mfc1 rd, fs R[rd] = F[fs]

Move To Coprocessor 1 mtc1 mtc1 rd, fs F[fs] = R[rd]

Convert Word To Single Precision cvt.s.w cvt.s.w fd, fs F[fd] = (float)F[fs]

Convert Single Precision To Word cvt.w.s cvt.w.s fd, fs F[fd] = (int)F[fs]

Convert Word To Double Precision cvt.d.w cvt.d.w fd, fs F[fd] = (double)F[fs]

Convert Double Precision To Word cvt.w.d cvt.w.d fd, fs F[fd] = (int)F[fs]

Branch on FP True bc1t bc1t label if (FPcond) goto label;

Branch on FP False bc1f bc1f label if (!FPcond) goto label;

FP Compare c.y.x c. y. x fs, ft FPcond = (F[fs] op F[ft])
? 1 : 0

Absolute Value abs.x abs.x fs, ft F[fs] = (F[ft] > 0) ? F[ft] :
-F[ft]

Add add.x add.x fd, fs, ft F[fd] = F[fs] + F[ft]

Subtract sub.x sub.x fd, fs, ft F[fd] = F[fs] - F[ft]

Multiply mul. x mul.x fd, fs, ft F[fd] = F[fs] * F[ft]

Divide div. x div.x fd, fs, ft F[fd] = F[fs] / F[ft]

Negation neg.x neg.x fs, ft F[fs] = -F[ft]

Move mov. x mov.x fd, fs F[fd] = F[fs]

With all of the opcodes that end in . x, the x is either s for single precision or d for double precision.

The y in the Compare instructions are one of eq, ne, lt, le, gt, ge. Since only eq, lt, and le are on the
greensheet itÕs safe to assume the other 3 are pseudoinstructions. Naturally op would be the
matching ==, !=, <, !, >, or >=.

Practice
WeÕre going to briefly go over some of the more different aspects of dealing with floating point
numbers, but since most of it is the same with just a different set of registers and calling
convention, we wonÕt be rehashing most concepts.

44

Getting Floating Point Literals
The first thing to know when dealing with floats is how to actually get float (or double) literals into
registers where you can actually operate on them.

There are 2 ways. The first, and simpler way, is to just declare them as globals and then use the lwc1
or ldw1 instructions:

Ê1 .data
Ê2 a: .float 3.14159
Ê3 b: .double 1.61
Ê4
Ê5 .text
Ê6 main:
Ê7
Ê8 la $t0, a
Ê9 lwc1 $f0, 0($t0) # get a into $f0
10
11 la $t0, b
12 ldc1 $f2, 0($t0) # get b into $f2-3
13
14 # other code here

The second way is to use the regular registers and convert the values. Of course this means unless
you want a integer value, youÕd have to actually do it twice and divide and even that would limit
you to rational numbers. It looks like this.

1 mtc1 $0, $f0 # move 0 to $f0 (0 integer == 0.0 float)
2
3 # get 4 to 4.0 in $f2
4 li $t0, 4
5 mtc1 $t0, $f2
6 cvt.s.w $f2, $f2 # convert 4 to 4.0

As you can see, other than 0 which is a special case, it requires at least 3 instructions, more than the
2 (or 1 if you load directly from the address) of the first method.

NOTE
There is a 3rd way that is even easier, but itÕs only supported in SPIM. The
pseudoinstructions li.s and li.d work exactly like li except to load float and
double literals into float/double registers.

Branching
Branching based on floating point values is slightly different than normal. Instead of being able to
test and jump in a single convenient instruction, you have to test first and then jump in a second
instruction if the test was true or not. This is the same way x86 does it. The test sets a special

45

control/flag register (or a certain bit or bits in the register) and then all jumps are based on its state.

Using it looks like this:

Ê1 c.lt.s $f0, $f2 # fpcond = f0 < f2
Ê2 bc1t was_less # if (f0 < f2) goto was_less
Ê3
Ê4 # do something for f0 >= f2
Ê5
Ê6 j blah
Ê7 was_less:
Ê8
Ê9 # do something for f0 < f2
10
11 blah:

Functions
Lastly, lets do a simple example of writing a function that takes a float and returns a float. IÕm not
going to bother doing one for doubles because itÕd be effectively the same, or doing one that
requires the stack, because the only difference from normal is a new set of registers and knowing
which ones to save or not from the table above.

So, how about a function to convert a fahrenheit temperature to celsius:

Ê1 .data
Ê2
Ê3 # 5/9 = 0.5 with 5 repeating
Ê4 fahrenheit2celsius: .float 0.5555555
Ê5
Ê6 .text
Ê7 # float convert_F2C(float degrees_f)
Ê8 convert_F2C:
Ê9 la $t0, fahrenheit2celsius
10 lwc1 $f0, 0($t0) # get conversion factor
11
12 # C = (F - 32) * 5/9
13 li $t0, 32
14 mtc1 $t0, $f1 # move int 32 to f1
15 cvt.s.w $f1, $f1 # convert to 32.0
16
17
18 sub.s $f12, $f12, $f1 # f12 = degrees - 32
19
20 mul.s $f0, $f0, $f12 # f0 = 0.555555 * f12
21
22 jr $ra

46

You can see we follow the convention with the argument coming in $f12 and the result being
returned in $f0 . In this function we use both methods for getting a value into float registers; one we
load from memory and the other, being an integer, we move and convert.

Conclusion
As I said before, it is rare for courses to even bother covering floating point instructions or assign
any homework or projects that use them, but hopefully this brief overview, combined with the
knowledge of previous chapters is sufficient.

There are also 2 example programs conversions.s and calc_pi.s for you to study. :source-highlighter:
pygments

47

https://raw.githubusercontent.com/rswinkle/mips_book/master/code/conversions.s
https://raw.githubusercontent.com/rswinkle/mips_book/master/code/calc_pi.s

Chapter 7: Tips and Tricks
This chapter is a grab bag of things you can do to improve your MIPS programs and make your life
easier.

Formatting
You may have noticed I have a general format I like to follow when writing MIPS (or any) assembly.
The guidelines I use are the following

1. 1 indent for all code excluding labels/macros/constants.

I use hard tabs set to a width of 4 but it really doesnÕt matter as long as itÕs just 1 indent
according to your preferences.

2. Use spaces to align the first operand of all instructions out far enough.

Given my 4 space tabs, this usually means column 11-13 for me. The reason to use spaces is to
prevent the circumstances that gave hard tabs a bad name. When you use hard tabs for
alignment, rather than indentation, and then someone else opens your code with their tab set to
a different width, suddenly everything looks like crap. Tabs for indentation, spaces for
alignment. Or as is increasingly common (thanks Python), spaces for everything but I refuse to
do that to the poor planet.{green_tabs}

3. A comma and a single space between operands.

The simulators donÕt actually require the comma but since other assembly
languages/assemblers do, you might as well get used to it. Besides I think itÕs easier to read with
the comma, though that might just be me comparing it to passing arguments to a function.

4. Comment every line or group of closely related lines with the purpose.

This is often just the equivalent C code. You can relax this a little as you get more experience.

5. Use a blank line to separate logically grouped lines of code.

While you can smash everything together vertically, I definitely wouldnÕt recommend it, even
less than I would in a higher level language.

6. Put the .data section at the top, similar to declaring globals in C.

There are exceptions for this. When dealing with a larger program with lots of strings, it can be
convienent to have multiple .data sections with the strings youÕre using declared close to where
you use them. The downside is you have to keep swapping back and forth between .text and
.data .

Misc. General Tips
1. Try to use registers starting from 0 and working your way up.

48

It helps you keep track of where things are (esp. combined with the comments). This obviously
can fall apart when you discover you forgot something or need to modify the code later and itÕs
often not worth changing all the registers youÕre already using just so you have that nice
sequence. When that happens IÕll sometimes just pick the other end of sequence (ie $t9 or $s7)
since if itÕs out of order I might as well make it obvious.

2. Minimize your jumps, labels, and especially your level of nested loops.

This was already covered in the chapters on branching and loops but it bears repeating.

3. In your prologue save $ra first, if necessary, then all s regs used starting at $s0.

Then copy paste the whole thing to the bottom, move the first line to the bottom and change the
number to positive and change all the sw to lw.

func:
Ê addi $sp, $sp, -20
Ê sw $ra, 0($sp)
Ê sw $s0, 4($sp)
Ê sw $s1, 8($sp)
Ê sw $s2, 12($sp)
Ê sw $s3, 16($sp)

Ê # body of func here that calls another function or functions
Ê # and needs to preserve 4 values across at least one of those calls

Ê lw $ra, 0($sp)
Ê lw $s0, 4($sp)
Ê lw $s1, 8($sp)
Ê lw $s2, 12($sp)
Ê lw $s3, 16($sp)
Ê addi $sp, $sp, 20

Constants
One of the easiest things you can do to make your programs more readable is to use defined
constants in your programs. Both MARS and SPIM have ways of defining constants similar to how C
defines macro constants; ie they arenÕt "constant variables" that take up space in memory, itÕs as if a
search+replace was done on them right before assembling the program.

LetÕs look at our Hello World program using constants for SPM and MARS

SPIM:

49

Ê1 sys_print_str = 4
Ê2 sys_exit = 10
Ê3
Ê4 .data
Ê5 hello: .asciiz "Hello World!\n"
Ê6
Ê7 .text
Ê8 main:
Ê9 li $v0, sys_print_str
10 la $a0, hello # load address of string to print into a0
11 syscall
12
13 li $v0, sys_exit
14 syscall

MARS:

Ê1 .eqv sys_print_str 4
Ê2 .eqv sys_exit 10
Ê3
Ê4 .data
Ê5 hello: .asciiz "Hello World!\n"
Ê6
Ê7 .text
Ê8 main:
Ê9 li $v0, sys_print_str
10 la $a0, hello # load address of string to print into a0
11 syscall
12
13 li $v0, sys_exit
14 syscall

Macros
MARS supports function style macros that can shorten your code and improve readability in some
cases (though I feel it can also make it worse or be a wash).

The syntax looks like this:

50

Ê1 .macro macroname
Ê2 instr1 a, b, c
Ê3 instr2, b, d
Ê4 # etc.
Ê5 .end_macro
Ê6
Ê7 # or with parameters
Ê8 .macro macroname(%arg1)
Ê9 instr1 a, %arg1
10 instr2 c, d, e
11 # etc.
12 .end_macro

Some common examples are using them to print strings:

Ê1 .macro print_str_label(%x)
Ê2 li $v0, 4
Ê3 la $a0, %x
Ê4 syscall
Ê5 .end_macro
Ê6
Ê7 .macro print_str(%str)
Ê8 .data
Ê9 str: .asciiz %str
10 .text
11 li $v0, 4
12 la $a0, str
13 syscall
14 .end_macro
15
16 .data
17
18 str1: .asciiz "Hello 1\n"
19
20 .text
21 # in use:
22 print_str_label(str1)
23
24 print_str("Hello World\n")
25
26 ...

You can see an example program in macros.s .

Unfortunately, as far as I can tell, SPIM does not support function style macros despite what MARSÕs
documentation implies about using a $ instead of a % for arguments.

51

https://raw.githubusercontent.com/rswinkle/mips_book/master/code/macros.s

Switch-Case Statements
It is relatively common in programming to have to compare an integral type variable (ie basically
any built in type but float and double) against a bunch of different constants and do something
different based on what it matches or if it matches none.

This could be done with a long if-else-if chain, but the longer the chain the more likely the
programmer is to choose a switch-case statement instead.

HereÕs a pretty short/simple example in C:

Ê1 printf("Enter your grade (capital): ");
Ê2 int grade = getchar();
Ê3 switch (grade) {
Ê4 case 'A' : puts("Excellent job!"); break;
Ê5 case 'B' : puts("Good job!"); break;
Ê6 case 'C' : puts("At least you passed?"); break;
Ê7 case 'D' : puts("Probably should have dropped it..."); break;
Ê8 case 'F' : puts("Did you even know you were signed up for the class?"); break;
Ê9 default : puts("You entered and invalid grade!");
10 }

You could translate this to its eqivalent if-else chain and handle it just like we cover in the chapter
on branching. However, imagine if this switch statment had a dozen cases, two dozen etc. The MIPS
code for that quickly becomes long and ugly.

So what if we implemented the switch in MIPS the same way it is semantically in C? The same way
compilers often (but not necessarily) use? Well before we do that, what is a switch actually doing? It
is jumping to a specific case label based on the value in the specified variable. It then starts
executing, falling through any other labels, till it hits a break which will jump to the end of the
switch block. If the value does not have its own case label, it will jump to the default label.

Compilers handle it by creating whatÕs called a jump table, basically an array of label addresses,
and using the variable to calculate an index in the table to use to jump to.

The C eqivalent of that would look like this:

Ê1 #include <stdio.h>
Ê2
Ê3
Ê4 // This compiles with gcc, uses non-standard extension
Ê5 // https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
Ê6
Ê7 int main()
Ê8 {
Ê9
10 // jump table
11 void * switch_table[] =
12 { &&a_label, &&b_label, &&c_label, &&d_label, &&default_label, &&f_label };

52

13
14 printf("Enter your grade (capital): ");
15 int grade = getchar();
16 grade -= 'A' ; // shift to 0
17
18 if (grade < 0 || grade > 'F' - 'A')
19 goto default_label;
20
21 goto *switch_table[grade];
22
23 a_label :
24 puts("Excellent job!");
25 goto end_switch;
26
27 b_label :
28 puts("Good job!");
29 goto end_switch;
30
31 c_label :
32 puts("At least you passed?");
33 goto end_switch;
34
35 d_label :
36 puts("Probably should have dropped it...");
37 goto end_switch;
38
39 f_label :
40 puts("Did you even know you were signed up for the class?");
41 goto end_switch;
42
43 default_label :
44 puts("You entered an invalid grade!");
45
46
47 end_switch:
48
49
50 return 0;
51 }

The && and goto *var syntax are actually not standard C/C++ but are GNU extensions that are
supported in gcc (naturally) and clang, possibly others. [10]

Notice how the size of the jump table is the value of the highest valued label minus the lowest + 1.
ThatÕs why we subtract the lowest value to shift the range to start at 0 for the indexing. Secondly,
any values without labels within that range are filled with the default_label address. Lastly, there
has to be an initial check for values outside the range to jump to default otherwise you could get an
error from an invalid access outside of the arrayÕs bounds.

The same program/code in MIPS would look like this:

53

Ê1 .data
Ê2
Ê3 a_str: .asciiz "Excellent job!\n"
Ê4 b_str: .asciiz "Good job!\n"
Ê5 c_str: .asciiz "At least you passed?\n"
Ê6 d_str: .asciiz "Probably should have dropped it...\n"
Ê7 f_str: .asciiz "Did you even know you were signed up for the class?\n"
Ê8
Ê9 invalid_str: .asciiz "You entered an invalid grade!\n"
10
11 enter_grade: .asciiz "Enter your grade (capital): "
12
13 switch_labels: .word a_label, b_label, c_label, d_label, default_label, f_label
14
15 .text
16
17 main:
18
19 li $v0, 4
20 la $a0, enter_grade
21 syscall
22
23 li $v0, 12 # read char
24 syscall
25
26 li $t2, 5 # f is at index 5
27
28 la $t0, switch_labels
29 addi $t1, $v0, -65 # t1 = grade - 'A'
30 blt $t1, $0, default_label # if (grade-'A' < 0) goto default
31 bgt $t1, $t2, default_label # if (grade-'A' > 5) goto default
32
33 sll $t1, $t1, 2 # offset *= 4 (sizeof(word))
34 add $t0, $t0, $t1 # t0 = switch_labels + byte_offset =
Ê &switch_labels[grade-'A']
35 lw $t0, 0($t0) # load address from jump table
36 jr $t0 # jump to
37
38 a_label:
39 la $a0, a_str
40 j end_switch
41
42 b_label:
43 la $a0, b_str
44 j end_switch
45
46 c_label:
47 la $a0, c_str
48 j end_switch
49

54

50 d_label:
51 la $a0, d_str
52 j end_switch
53
54 f_label:
55 la $a0, f_str
56 j end_switch
57
58 default_label:
59 la $a0, invalid_str
60
61
62 end_switch:
63 li $v0, 4
64 syscall
65
66 li $v0, 10 # exit
67 syscall

ItÕs easy to forget that jr does not actually stand for "jump return" even though itÕs almost always
used for that purpose. Instead it stands for "jump register" and we can use it to do the eqivalent of
the computed goto statement in C.

While this example probably wasnÕt worth making switch style, because the overhead and extra
code of making the table and preparing to jump balanced out or even outweighed the savings of a
branch instruction for every case, as the number of options increases, the favor tilts toward using a
jump table like this as long as the range of values isnÕt too sparse. If the range of values is is the
100Õs or 1000Õs but you only have cases for a dozen or so, then obviously that isnÕt worth it to create
a table that large just to fill it almost entirely with the default label.

Just to reiterate, remember it is not about the magnitude of the actual values youÕre looking for, just
the difference between the highest and lowest because high - low + 1 is the size of your table.

Command Line Arguments
Command line arguments, also known as program arguments, or command line parameters are
strings that are passed to the program on startup. In high level languages like C, they are accessed
through the parameters to the main function (naturally):

55

Ê1 #include <stdio.h>
Ê2
Ê3 int main(int argc, char** argv)
Ê4 {
Ê5 printf("There are %d command line arguments: \n " , argc);
Ê6
Ê7 for (int i= 0; i<argc; i++) {
Ê8 printf("%s\n " , argv[i]);
Ê9 }
10
11 return 0;
12 }

As you can see, argc contains the number of parameters and argv is an array of C strings that are
those arguments. If you run this program youÕll get something like this:

$./args 3 random arguments
There are 4 command line arguments:
./args
3
random
arguments

Notice that the first argument is the what you actually typed to invoke the program, so you always
have at least one argument.

MIPS works the same way. The number of arguments is in $a0 and an array of strings is in $a1 when
main starts. So the same program in MIPS looks like this;

56

Ê1 .data
Ê2
Ê3 there_are: .asciiz "There are "
Ê4 arguments: .asciiz " command line arguments:\n"
Ê5
Ê6 .text
Ê7
Ê8 main:
Ê9 move $t0, $a0 # save argc
10
11 li $v0, 4
12 la $a0, there_are
13 syscall
14
15 move $a0, $t0
16 li $v0, 1 # print int
17 syscall
18
19 li $v0, 4
20 la $a0, arguments
21 syscall
22
23 li $t1, 0 # i = 0
24 j arg_loop_test
25
26 arg_loop:
27 li $v0, 4
28 lw $a0, 0($a1)
29 syscall
30
31 li $v0, 11
32 li $a0, 10 # '\n'
33 syscall
34
35 addi $t1, $t1, 1 # i++
36 addi $a1, $a1, 4 # argv++ ie a1 = &argv[i]
37 arg_loop_test:
38 blt $t1, $t0, arg_loop # while (i < argc)
39
40 li $v0, 10
41 syscall

This program works exactly like the C program when using SPIM:

57

$ spim -file args.s 3 random arguments
SPIM Version 8.0 of January 8, 2010
Copyright 1990-2010, James R. Larus.
All Rights Reserved.
See the file README for a full copyright notice.
Loaded: /usr/lib/spim/exceptions.s
There are 4 command line arguments:
args.s
3
random
arguments

Obviously the commands for SPIM itself are not included but the file name (args.s) takes the place
as the "executable".

Unfortunately, MARS works differently, probably because itÕs more GUI focused. It does not pass the
program/file name as the first argument, so you can actually get 0 arguments:

$ java -jar ~/Mars4_5.jar args.s pa 3 random arguments
MARS 4.5 Copyright 2003-2014 Pete Sanderson and Kenneth Vollmar

There are 3 command line arguments:
3
random
arguments

You can see that you have to put "pa" (for "program arguments") to indicate that the following
strings are arguments. In the GUI, there is an option in "Settings" called "Program arguments
provided to MIPS progam" which if selected will add a text box above the Text Segment for you to
enter in the arguments to be passed.

58

Figure 1. Enable program arguments in MARS GUI

59

