

MIPS Assembly Programmming
Robert Winkler

Version 1.0.11, 2025-04-05

Table of Contents
Info . 1

Dedication. 2

Chapter 0: Hello World . 3

Prereqs . 3

System Setup . 3

Handy Resources . 4

Hello World . 4

Building and Running . 6

Conclusion . 6

Exercises. 7

Chapter 1: Data . 8

Arrays . 9

Exercises. 10

Chapter 2: System Calls . 12

Examples . 13

Exercises. 15

Chapter 3: Branches and Logic . 17

Practice . 18

Conclusion . 27

Exercises. 27

Chapter 4: Loops . 28

Looping Through Arrays . 30

Conclusion . 35

Exercises. 35

Chapter 5: Functions and the MIPS Calling Convention . 37

Functions . 37

The Convention . 38

Conclusion . 44

Exercises. 44

Chapter 6: Floating Point Types . 46

Floating Point Registers and Instructions . 46

Practice . 47

Getting Floating Point Literals . 48

Branching. 48

Functions . 49

Conclusion . 50

Exercises. 50

Chapter 7: Tips and Tricks . 51

Formatting . 51

Misc. General Tips . 51

Constants . 52

Macros . 53

Switch-Case Statements . 54

Command Line Arguments . 58

Delayed Branches and Delayed Loads . 62

No Pseudoinstructions Allowed . 63

Exercises. 67

References and Useful Links . 69

Supporters . 70

Corporate . 70

Info
Copyright © 2021-2025 Robert Winkler

This book is licensed under the Creative Commons BY-NC-SA 4.0 which summarized means:

You are free to:

• Share — copy and redistribute the material in any medium or format

• Adapt — remix, transform, and build upon the material

• The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

• Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that suggests
the licensor endorses you or your use.

• NonCommercial — You may not use the material for commercial purposes.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.

This book is available online in HTML, PDF, and EPUB formats.

You can support the book and purchase the chapter exercise solutions from my store or Leanpub.

The repo for the book, where you can get the code referenced and report any errors (submit an
issue or even a pull request) is here. The code is MIT licensed.

If you’re interested in contacting me regarding MIPS tutoring or any other business request related
to the book, you can reach me at books@robertwinkler.com.

1

http://robertwinkler.com
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.robertwinkler.com/projects/mips_book/mips_book.html
https://www.robertwinkler.com/projects/mips_book/mips_book.pdf
https://www.robertwinkler.com/projects/mips_book/mips_book.epub
https://store.robertwinkler.com/
https://leanpub.com/mipsassemblyprogrammming
https://github.com/rswinkle/mips_book
mailto:books@robertwinkler.com

Dedication
This book is dedicated to all its supporters and all the students I’ve helped with MIPS over the years
who inspired me to create it.

Thank you.

An extra thank you goes to the corporate level sponsors below:

2

http://www.robertwinkler.com/projects/mips_book/
http://www.robertwinkler.com/

Chapter 0: Hello World
In which we lay the groundwork for the rest of the book…

Prereqs
While someone with no programming experience could probably learn MIPS from this book, it is
definitely preferable to have at least some experience in a higher level imperative programming
language. I say imperative, because programming in assembly is the antithesis of functional
programming; everything is about state, with each line changing the state of the CPU and
sometimes memory. Given that, experience in functional languages like Lisp, Scheme etc. are less
helpful than experience in C/C++, Java, Python, Javascript etc.

Of all of the latter, C is the best, with C++ being a close second because at least all of C exists in C++.
There are many reasons C is the best prior experience when learning assembly (any assembly, not
just MIPS), including the following:

• pointers, concepts and symmetry of "address of" and "dereference" operators

• pointer/array syntax equivalence

• stack allocation as the default

• manual memory management, no garbage collector

• global data

• rough equivalence in structure of a C program and an assembly program (vs. say Java)

• pass by value

There is some overlap between those and there are probably more, but you can see that most other
languages that are commonly taught as first languages are missing most, if not all of those things.

Even C++, which technically has all of them, being a superset of C, is usually taught in a way that
mostly ignores all of those things. They teach C++ as if it’s Java, never teaching the fundamentals. In
any case this is getting into my problems with CS pedagogy of the last 20 years based on my
experience as a CS major myself ('12) and as a programming tutor helping college students across
the country since 2016, and I should save it for a proper essay/rant sometime.

Long story short, I use C code and C syntax to help explain and teach MIPS. I’ll try to provide
enough explanation regardless of past experience as best I can.

System Setup
As I tell all of my tutoring students, if you’re majoring in CS or anything related I highly recommend
you use Linux. It’s easier in every way to do dev work on Linux vs Windows or Mac. Many
assignments require it, which often necessitates using a virtual machine (which is painful,
especially on laptops) and/or ssh-ing into a school Linux server, which is also less than ideal. In
general, you’ll have to learn how to use the Unix terminal eventually and will probably use it to
some extent in your career so it also makes sense to get used to it asap.

3

That being said, Windows does now have WSL so you can get the full Ubuntu or Debian or Fedora
etc. terminal based system on Windows without having to setup a real virtual machine (or dealing
with the slowdown that would cause). I’ve even heard that they’ll get support for Linux GUI
programs soon.

MacOS on the other hand, is technically a Unix based system and you can use their terminal and
install virtually any program from there using Macports or Homebrew or similar.

There are 3 commonly used MIPS simulators that I know of:

• SPIM is probably the oldest and is terminal only

• QtSpim is a GUI front end for SPIM

• MARS is a Java GUI based simulator with dozens of extra syscalls, syntactic sugar and features
like graphics, memory mapped I/O, etc.

SPIM and QtSpim are in the Debian/Ubuntu repos so you can install them with the following

$ sudo apt install qtspim spim

You can probably find them in the repos for other distros too and install them similarly.

If it’s not in your repos or you’re on Windows (and not using WSL) or Mac you can download them,
and MARS at these addresses

• MARS

• QtSpim

Handy Resources
There are a few references that you should bookmark (or download) before you get started. The
first is the MIPS Greensheet. It’s possible you already have a physical copy of this as it’s actually the
tearout from the Patterson and Hennessey textbook Computer Organization and Design MIPS
Edition that is commonly used in college courses.

The second thing is the list of syscalls from the MARS website.

I recommend you download/bookmark both and keep them open while working because you’ll be
referencing them often to remind yourself which instructions and syscalls you have available and
how they work.

Hello World
Let’s start with the classic hello world program, first in C, then in MIPS, and go over all the pieces in
overview. You can copy paste these into your editor of choice (mine being neovim), or use the files
in the associated repo to follow along.

1 #include <stdio.h>

4

https://github.com/dpetersanderson/MARS/
https://sourceforge.net/projects/spimsimulator/files/
https://raw.githubusercontent.com/rswinkle/mips_book/master/references/MIPS_Green_Sheet.pdf
https://amzn.to/3zN71KP
https://amzn.to/3zN71KP
https://dpetersanderson.github.io/Help/SyscallHelp.html

2
3 int main()
4 {
5 printf("Hello World!\n");
6 return 0;
7 }

It is pretty self explanatory. You have to include stdio.h so you can use the function printf (though
in the real world I’d use puts here), the function main is the start of any C/C++ program, which is a
function that returns an int. We call printf to display the string "Hello World!\n" to the user and
then return 0 to exit. Returning 0 indicates success and there were no errors.

You can compile and run it in a linux/unix terminal as shown below. You can substitute clang or
another compiler for gcc if you want.

$ gcc -o hello hello.c
$./hello
Hello World!

Now, the same program in MIPS:

 1 .data
 2 hello: .asciiz "Hello World!\n"
 3
 4 .text
 5 main:
 6 li $v0, 4 # load immediate, v0 = 4 (4 is print string system call)
 7 la $a0, hello # load address of string to print into a0
 8 syscall
 9
10 li $v0, 10 # exit syscall
11 syscall

The .data section is where you declare global variables, which includes string literals as in this case.
We’ll cover them in more detail later.

The .text section is where any code goes. Here we declare a single label main:, indicating the start
of our main function.

We then put the number 4 in the $v0 register to select the print string system call. The print string
system call takes one argument, the address of the string to print, in the $a0 register. We do that on
the next line. On line 8, we call the system call using the syscall instruction.

Finally we call the exit system call which takes no arguments and exits the program.

Again, we’ll cover system calls in a later chapter. This is just an intro/overview so don’t worry if
some things aren’t completely clear. This chapter is about getting you up and running, not really
about teaching anything specific yet.

5

Building and Running
Now that we have our hello world MIPS program, how do we run it? Well the easiest and
quickest[1] way is of course to do it on the command line, which can be done like this for spim:

$ spim -file hello.s
SPIM Version 8.0 of January 8, 2010
Copyright 1990-2010, James R. Larus.
All Rights Reserved.
See the file README for a full copyright notice.
Loaded: /usr/lib/spim/exceptions.s
Hello World!

or this for MARS:

$ java -jar ~/Mars4_5.jar hello.s
MARS 4.5 Copyright 2003-2014 Pete Sanderson and Kenneth Vollmar

Hello World!

The name of your MARS jar file may be different[2], so be sure to use the correct name and path. For
myself, I keep the jar file in my home directory so I can use tilde to access it no matter where I am.
You can also copy it into your working directory (ie wherever you have your source code) so you
don’t have to specify a path at all. There are lots of useful command line options that you can use[3],
some of which we’ll touch on later.

Running the jar directly on the command line works even in the DOS command line though I’ve
never done it and it’s probably not worth it.

Alternatively, you can start up MARS or QtSpim like a normal GUI application and then load your
source file. MARS requires you to hit "assemble" and then "run". Whereas with QtSpim you only
have to hit "run".

QtSpim does let you start and load the file in one step from the command line

$ qtspim hello.s

but there is no way to simply run it with out starting the GUI, which makes sense since the whole
point is to be a GUI wrapper around spim.

Conclusion
Well, there you have it, you have written and run your first MIPS program. Another few chapters
and you will have no trouble with almost anything you would want to do in MIPS, whether for a
class, or on your own for fun.

6

Exercises
You can support the book and purchase the chapter exercise solutions from my store or Leanpub.

1. Modify the hello world program to print something different, perhaps your name.

2. Run it with both SPIM and MARS.

[1] Starting up the MARS GUI (an old Java app) is often annoyingly slow

[2] Some schools/professors have their own versions with extra features and other improvements over the old version available on
the MARS website

[3] https://dpetersanderson.github.io/Help/MarsHelpCommand.html

7

https://store.robertwinkler.com/
https://leanpub.com/mipsassemblyprogrammming
https://dpetersanderson.github.io/Help/MarsHelpCommand.html

Chapter 1: Data
In MIPS, you can declare global variables in the .data section.

At a minimum, this is where you would declare/define any literal strings your program will be
printing, since virtually every program has at least 1 or 2 of those.

When declaring something in the .data section, the format is

variable_name: .directive value(s)

where whitespace between the 3 is arbitrary. The possible directives are listed in the following
table:

Table 1. MIPS data types

Directive Size C equivalent

.byte 1 char

.half 2 short

.word 4 int, all pointer types

.float 4 float

.double 8 double

.ascii NA char str[5] = "hello"; (no '\0')

.asciiz NA char str[] = "hello"; (includes the '\0')

.space NA typeless, unitinialized space, can be used for any
type/array

As you can see it’s pretty straightforward, but there are a few more details about actually using
them so let’s move onto some examples.

Say you wanted to convert the following simple program to MIPS:

 1 #include <stdio.h>
 2
 3 int main()
 4 {
 5 char name[30];
 6 int age;
 7 printf("What's your name and age?\n");
 8 scanf("%s %d", name, &age);
 9 printf("Hello %s, nice to meet you!\n", name);
10 return 0;
11 }

The first thing you have to remember when converting from a higher level language to assembly
(any assembly), is that what matters is whether it is functionally the same, not whether everything

8

is done in exactly the same way.[1] In this instance, that means realizing that your literal strings and
your local variables name and age become globals in MIPS.

 1 .data
 2 age: .word 0 # can be initialized to anything
 3
 4 ask_name: .asciiz "What's your name and age?\n"
 5 hello_space: .asciiz "Hello "
 6 nice_meet: .asciiz ", nice to meet you!\n"
 7
 8 name: .space 30
 9
10 .text
11
12 # main goes here

As you can see in the example, we extract all the string literals and the character array name and int
age and declare them as MIPS globals. One thing to note is the second printf. Because it prints a
variable, name, using the conversion specifier, we break the literal into pieces around that. Since
there is no built-in printf function in MIPS, you have to handle printing variables yourself with the
appropriate system calls.

Arrays
Obviously strings are special cases that can be handled with .ascii or .asciiz for literals, but for
other types or user inputed strings how do we do it?

The first way, which was demonstrated in the snippet above is to use .space to declare an array of
the necessary byte size. Keep in mind that the size is specified in bytes not elements, so it only
matches for character arrays. For arrays of ints/words, floats, doubles etc. you’d have to multiply by
the sizeof(type).

"But, .space only lets you declare uninitialized arrays, how do I do initialized ones?"

Actually, it appears .space initializes everything to 0 similar to global/static data in C and C++,
though I can’t find that documented anywhere.

Aside from that, there are two ways depending on whether you want to initialize every element to
the same value or not.

For different values, the syntax is an extension of declaring a single variable of that type. You
specify all the values, comma separated. This actually gives you another way to declare a string or a
character array, though I can’t really think of a reason you’d want to. You could declare a .byte
array and list all the characters individually.

However, if you want an array with all elements initialized to the same value there is a more
convenient option. After the type you put the value you want, a colon, and then the number of
elements. So a: .word 123 : 10 would declare a 10 integer array with all elements set to 123. This
works for all types in MARS, but SPIM does not support this syntax for floats and doubles. Since

9

you’ll probably not have to deal with floating point types at all, let alone arrays of them initialized
to a particular value, this isn’t a huge loss.

Given what we just covered, this:

1 int a[20];
2 double b[20];
3 int c[10] = { 9,8,7,6,5,4,3,2,1,0 };
4 int d[5] = { 42, 42, 42, 42, 42 };
5 char e[3] = { 'a', 'b', 'c' };

becomes

1 .data
2 a: .space 80
3 b: .space 160
4 c: .word 9,8,7,6,5,4,3,2,1,0
5 d: .word 42 : 5
6 e: .byte 'a', 'b', 'c'

For more examples of array declarations, see array_decls.s. You don’t have to understand the rest of
the code, just that it prints out each of the arrays.

Exercises
You can support the book and purchase the chapter exercise solutions from my store or Leanpub.

1. Create a MIPS data section that declares variables equivalent to the following. This will not be a
runnable program without a main.

1 float a;
2 float b = 2.71;
3 int myarray[10] = { 9, 8, 7, 6, 5, 4, 3, 2, 1 };
4 short array2[10];
5
6 char mips_str[] = "MIPS assembly is awesome!";

2. How would you declare an array of 500 points? The point structure is tightly packed and
defined like this:

1 struct point {
2 float x;
3 float y;
4 float z;
5 };

10

https://raw.githubusercontent.com/rswinkle/mips_book/master/code/array_decls.s
https://store.robertwinkler.com/
https://leanpub.com/mipsassemblyprogrammming

[1] Obviously compilers have to follow stricter rules, but for the purposes of learning and actually using assembly directly, there’s
no reason to make your life harder than necessary.

11

Chapter 2: System Calls
We mentioned system calls (aka syscalls from now on) in chapter 0 when we were going over our
"Hello World" program, but what exactly are they?

Essentially, they are the built in functions of an operating system; in this case, the simple operating
system of the MIPS simulators. They provide access to all the fundamental features, like input and
output to/from both the console and files, allocating memory, and exiting. That covers all the 17
syscalls supported by spim, but MARS supports many more, for things ranging from playing MIDI
sounds, to getting a random number, to creating GUI dialogs.[1]

NOTE

Except for the MARS or SPIM specific chapters/sections, I’ll be sticking to code
compatible with both throughout this book, meaning we only use the first 17
syscalls, and don’t get to use some of the syntactic sugar available in MARS, or any
SPIM specific features either.

Table 2. SPIM supported syscalls

Name $v0 Arguments Result

print integer 1 $a0 = integer to print

print float 2 $f12 = float to print

print double 3 $f12 = double to print

print string 4 $a0 = address of string

read integer 5 $v0 = integer read

read float 6 $f0 = float read

read double 7 $f0 = double read

read string 8 $a0 = address of input buffer
$a1 = buffer size

works like C’s fgets

sbrk 9 $a0 = size in bytes to allocate $v0 = address of allocated memory
(sbrk is basically malloc but there is
no free)

exit 10 program terminates

print character 11 $a0 = character to print (ascii value)

read character 12 $v0 = character read

open file 13 $a0 = address of filename
$a1 = flags
$a2 = mode

$v0 = file descriptor (negative if
error)

read from file 14 $a0 = file descriptor
$a1 = address of input buffer
$a2 = max characters to read

$v0 = number of characters read, 0
for end-of-file, negative for error

12

Name $v0 Arguments Result

write to file 15 $a0 = file descriptor
$a1 = address of output buffer
$a2 = number of characters to write

$v0 = number of characters written,
negative for error

close file 16 $a0 = file descriptor

exit2 17 $a0 = termination result program terminates, returning
number in $a0 (only meaningful
when run in the terminal, ignored
in GUI)

As you can see, they really only cover the basics. You can read or write the different types, do file
I/O using calls identical to POSIX functions (open, read, write, close; see man pages), allocate
memory, and exit. Even so, they’re sufficient to build anything you want.

So, what does that table mean? How do these actually work?

The process is:

1. Put the number for the syscall you want in $v0

2. Fill in the appropriate arguments, if any

3. Execute the syscall with syscall

1 li $v0, 1 # 1 is print integer
2 li $a0, 42 # takes 1 arg in a0, the number to print
3 syscall # actually execute syscall

You can think of the above as print_integer(42);. Let’s look at an actual program that uses a few
more syscalls next.

Examples

 1 #include <stdio.h>
 2
 3 int main()
 4 {
 5 int age;
 6 int height;
 7 char name[50];
 8 printf("What's your name? ");
 9 fgets(name, 50, stdin);
10
11 printf("Hello %s", name);
12
13 printf("How old are you? ");
14 scanf("%d", &age);
15

13

16 printf("Enter your height in inches: ");
17 scanf("%d", &height);
18
19 printf("Your age + height = %d\n", age + height);
20
21 return 0;
22 }

I’m using fgets() instead of scanf("%s", name) because fgets works the same as the read string
syscall (8).

 1 .data
 2
 3 name: .space 50
 4
 5 nameprompt: .asciiz "What's your name? "
 6 hello_space: .asciiz "Hello "
 7 how_old: .asciiz "How old are you? "
 8 ask_height: .asciiz "Enter your height in inches: "
 9 ageplusheight: .asciiz "Your age + height = "
10
11
12 .text
13 main:
14 li $v0, 4 # print string system call
15 la $a0, nameprompt # load address of string to print into a0
16 syscall
17
18 li $v0, 8 # read string
19 la $a0, name
20 li $a1, 50
21 syscall
22
23 li $v0, 4
24 la $a0, hello_space
25 syscall
26
27 la $a0, name # note 4 is still in $v0
28 syscall
29
30 # don't print a newline here because
31 # one will be part of name
32
33 li $v0, 4
34 la $a0, how_old
35 syscall
36
37 li $v0, 5 # read integer
38 syscall
39 move $t0, $v0 # save age in t0

14

40
41 li $v0, 4
42 la $a0, ask_height
43 syscall
44
45 li $v0, 5 # read integer
46 syscall
47 add $t0, $t0, $v0 # t0 += height
48
49
50 li $v0, 4
51 la $a0, ageplusheight
52 syscall
53
54 li $v0, 1 # print int
55 move $a0, $t0 # a0 = age + height
56 syscall
57
58 # print newline
59 li $v0, 11 # print char
60 li $a0, 10 # ascii value of '\n'
61 syscall
62
63
64 li $v0, 10 # exit syscall
65 syscall

There a few things to note from the example.

We don’t declare global variables for age or height. We could, but there’s no reason to since we
need them in registers to perform the addition anyway. Instead, we copy/save age to $t0 so we can
use $v0 for 2 more syscalls, then add height to $t0.

This is generally how it works. Use registers for local variables unless required to do otherwise.
We’ll cover more about register use when we cover the MIPS calling convention.

Another thing is when we print their name, we don’t put 4 in $v0 again because it is still/already 4
from the lines above. Unless the syscall says it writes to $v0 you can assume it is unmodified.

Lastly, many people will declare a string "\n" and use print string to print a newline, but it’s easier
to use the print char syscall as we do right before exiting.

Exercises
You can support the book and purchase the chapter exercise solutions from my store or Leanpub.

1. Convert the following C code to MIPS

 1 #include <stdio.h>

15

https://store.robertwinkler.com/
https://leanpub.com/mipsassemblyprogrammming

 2
 3 int main()
 4 {
 5 float price;
 6 double golden = 1.618;
 7 int ret;
 8
 9 printf("Enter what the price of gas was last time you filled up: ");
10 scanf("%f", &price);
11
12 printf("%f is too expensive!\n", price);
13
14 printf("The golden ratio is roughly %f\n", golden);
15
16
17 printf("Enter an integer for the program to return: "
18 scanf("%d", &ret);
19 return ret;
20 }

2. Write a program that asks the user for their name, reads it in, and then prints "Hello [user’s
name]!"

[1] https://dpetersanderson.github.io/Help/SyscallHelp.html

16

https://dpetersanderson.github.io/Help/SyscallHelp.html

Chapter 3: Branches and Logic
We can’t go much further in our MIPS programming journey without covering branching. Almost
every non-trivial program requires some logic, even if it’s only a few if or if-else statements. In
other words, almost every program requires branching, a way to do a instead of b, or to do a only if
certain conditions are met.

You already know how to do this in higher level languages, the aforementioned if statement. In
assembly it’s more complicated. Your only tool is the ability to jump to a label on another line based
on the result of various comparisons. The relevant instructions are listed in the following table:

Table 3. MIPS branching related instructions (and pseudoinstructions)

Name Opcode Format Operation

Branch On Equal beq beq rs, rt, label if (rs == rt) goto label

Branch On Not Equal bne bne rs, rt, label if (rs != rt) goto label

Branch Less Than blt blt rs, rt, label if (rs < rt) goto label

Branch Greater Than bgt bgt rs, rt, label if (rs > rt) goto label

Branch Less Than Or Equal ble ble rs, rt, label if (rs ⇐ rt) goto label

Branch Greater Than Or Equal bge bge rs, rt, label if (rs >= rt) goto label

Set Less Than slt slt rd, rs, rt rd = (rs < rt) ? 1 : 0

Set Less Than Immediate slti slt rd, rs, imm rd = (rs < imm) ? 1 : 0

Set Less Than Immediate Unsigned sltiu slt rd, rs, imm rd = (rs < imm) ? 1 : 0

Set Less Than Unsigned sltu sltu rd, rs, rt rd = (rs < rt) ? 1 : 0

You can see the same information and more (like which ones are pseudoinstructions) on the MIPS
greensheet.[1]

There are additional pseudoinstructions in the form of beq/bne/blt/bgt/ble/bge + 'z' which are
syntactic sugar to compare a register against 0, ie the 0 register.

So the following:

 beq $t0, $0, label
 bne $t1, $0, label
 blt $t2, $0, label

would be equivalent to:

 beqz $t0, label
 bnez $t1, label
 bltz $t2, label

17

Note $0 is the same as zero and is the hard coded 0 register. I’ll cover registers in more detail in the
chapter on functions and the calling conventions.

One final thing is that labels have the same naming requirements as C variables and functions.
They must start with a letter or underscore and the rest can be letters, underscores, or digits.

Practice
The rest of this chapter will be going over many examples, looking at snippets of code in C and
translating them to MIPS.

Basics

Let’s start with the most basic if statement. The code in and after the if statement is arbitrary.

1 if (a > 0) {
2 a++;
3 }
4 a *= 2;

Now in MIPS, let’s assume that a is in $t0. The tranlation would look like this:

1 ble $t0, $0, less_eq_0 # if (a <= 0) goto less_eq_0
2 addi $t0, $t0, 1 # a++
3 less_eq_0:
4 sll $t0, $t0, 1 # a *= 2 (shifting left by n is multiplying by 2^n)

There are a few things to note in this example. The first is that in assembly we test for the opposite
of what was in the if statement. This will always be the case when jumping forward because (if we
want to keep the same order of code) we can only jump over a block of code, whereas in C we fall
into the block if the condition is true. In the process of mentally compiling a bit of C to assembly, it
can be helpful to change to jump based logic first. For example the previous C would become:

1 if (a <= 0)
2 goto less_eq_0;
3 a++;
4 less_eq_0:
5 a *= 2;

This is obviously still valid C but matches the branching behavior of assembly exactly. You can see I
put comments for the equivalent C code in my assembly; it helps with readability to comment every
line or group of lines that way.

The second thing to notice is how we handled the multiplication. This has nothing to do with
branching but is something we’ll touch on multiple times throughout the book. Your job when
acting as a human compiler is to match the behavior. You are under no obligation to match the

18

structure or operations of the higher level code exactly (unless your professor stupidly forces you
to).

Given that, it is in your best interest to change and rearrange things in order to simplify the
assembly as much as possible to make your life easier. Generally speaking, this also tends to result
in more performant code, since using fewer instructions and fewer branches (the most common
outcomes) saves execution time.

In this case, the standard mult instruction (from the green sheet) would have required 3
instructions, and even the mul instruction (that does seem to be supported everywhere but is not on
the green sheet) would take 2:

1 li $t1, 2
2 mult $t0, $t1
3 mflo $t0 # a *= 2
4
5 # or
6
7 li $t1, 2
8 mul $t0, $t0, $t1 # a *= 2

This is why, when multiplying or dividing by a constant power of 2 it’s common practice to use sll
or sra. This is true in all assembly languages because multiplication and division are relatively
costly operations so using shifts when you can saves performance even if you didn’t actually save
instructions.

Ok, let’s look at an if-else example. Again, the actual code is arbitrary and we’re assuming a and b
are in $t0 and $t1 respectively

1 if (a > 0) {
2 b = 100;
3 } else {
4 b -= 50;
5 }

You could do it something like these two ways

 1 bgt $t0, $0, greater_0 # if (a > 0) goto greater_0
 2 addi $t1, $t1, -50 # b -= 50
 3 j less_eq_0
 4 greater_0:
 5 li $t1, 100 # b = 100
 6 less_eq_0:
 7
 8 # or
 9
10 ble $t0, $0, less_eq0 # if (a <= 0) goto less_eq_0
11 li $t1, 100 # b = 100

19

12 j greater_0
13 less_eq_0:
14 addi $t1, $t1, -50 # b -= 50
15 greater_0:

You can see how the first swaps the order of the actual code which keeps the actual conditions the
same as in C, while the second does what we discussed before and inverts the condition in order
keep the the blocks in the same order. In both cases, an extra unconditional branch and label are
necessary so we don’t fall through the else case. This is inefficient and wasteful, not to mention
complicates the code unecessarily. Remember how our job is to match the behavior, not the exact
structure? Imagine how we could rewrite it in C to simplify the logic:

1 b -= 50;
2 if (a > 0) {
3 b = 100;
4 }

which becomes

1 addi $t1, $t1, -50 # b -= 50;
2 ble $t0, $0, less_eq_0 # if (a <= 0) goto less_eq_0
3 li $t1, 100 # b = 100
4 less_eq_0:

That is a simple example of rearranging code to make your life easier. In this case, we are taking
advantage of what the code is doing to make a default path or default case. Obviously, because of
the nature of the code subtracting 50 has to be the default since setting b to 100 overwrites the
original value which we’d need if we were supposed to subtract 50 instead. In cases where you
can’t avoid destructive changes (like where the condition and the code are using/modifying the
same variable), you can use a temporary variable; i.e. copy the value into a spare register. You still
save yourself an unecessary jump and label.

Compound Conditions

These first 2 examples have been based on simple conditions, but what if you have compound
conditions? How does that work with branch operations that only test a single condition? As you
might expect, you have to break things down to match the logic using the operations you have.

Let’s look at and first. Variables a, b, and c are in t0, t1, and t2.

1 if (a > 10 && a < b) {
2 c += 20;
3 }
4 b &= 0xFF;

So what’s our first step? Like previous examples, we need to test for the opposite when we switch to

20

assembly, so we need the equivalent of

1 if (!(a > 10 && a < b))
2 goto no_add20;
3 c += 20;
4 no_add20:
5 b &= 0xFF;

That didn’t help us much because we still don’t know how to handle that compound condition. In
fact we’ve made it more complicated. If only there were a way to convert it to or instead of and.
Why would we want that? Because, while both and and or in C allow for short circuit evaluation
(where the result of the whole expression is known early and the rest of expression is not
evaluated), with or, it short circuits on success while and short circuits on failure. What does that
mean? It means that with or, the whole expression is true the second a single true term is found,
while with and the whole expression is false the second a single false term is found.

Let’s look at the following code to demonstrate:

 1 if (a || b || c) {
 2 something;
 3 }
 4
 5 // What does this actually look like if we rewrote it to show what it's
 6 // actually doing with short circuit evaluation?
 7
 8 if (a) goto do_something;
 9 if (b) goto do_something;
10 if (c) goto do_something;
11 goto dont_do_something;
12
13 do_something:
14 something;
15
16 dont_do_something:
17
18 // You can see how the first success is all you need
19 // Compare that with and below:
20
21 if (a && b && c) {
22 something;
23 }
24
25 if (a) {
26 if (b) {
27 if (c) {
28 something;
29 }
30 }
31 }

21

32 // which in jump form is
33
34 if (a)
35 goto a_true;
36 goto failure;
37 a_true:
38 if (b)
39 goto b_true;
40 goto failure;
41
42 b_true:
43 if (c)
44 goto c_true:
45 goto failure;
46
47 c_true:
48 something;
49 failure:
50
51 // Man that's ugly, overcomplicated, and hard to read
52 // But what if we did this instead:
53
54 if (!a) goto dont_do_something;
55 if (!b) goto dont_do_something;
56 if (!c) goto dont_do_something;
57
58 something;
59
60 dont_do_something:
61
62 // Clearly you need all successes for and. In other words
63 // to do and directly, you need state, knowledge of past
64 // successes. But what about that second translation of and?
65 // It looks a lot like or?

You’re exactly right. That final translation of and is exactly like or.

It takes advantage of De Morgan’s laws.[2] For those of you who haven’t taken a Digital Logic course
(or have forgotten), De Morgan’s laws are 2 equivalencies, a way to change an or to an and, and
vice versa.

They are (in C notation):

!(A || B) == !A && !B

!(A && B) == !A || !B

Essentially you can think of it as splitting the not across the terms and changing the logical
operation. The law works for arbitrary numbers of terms, not just 2:

(A && B && C)

22

is really
((A && B) && C)
so when you apply De Morgan's Law recursively you get:
!((A && B) && C) == !(A && B) || !C == !A || !B || !C

Let’s apply the law to our current compound and example. Of course the negation of greater or less
than comparisons means covering the rest of the number line so it becomes:

1 if (a <= 10 || a >= b))
2 goto no_add20;
3 c += 20;
4 no_add20:
5 b &= 0xFF;

which turns into:

1 li $t9, 10
2 ble $t0, $t9, no_add20 # if (a <= 10) goto no_add20
3 bge $t0, $t1, no_add20 # if (a >= b) goto no_add20
4
5 addi $t2, $t2, 20 # c += 20
6 no_add20:
7 andi $t1, $t1, 0xFF # b &= 0xFF

See how that works? Or's do not need to remember state. Just the fact that you reached a line in a
multi-term or expression means the previous checks were false, otherwise you’d have jumped. If
you tried to emulate the same thing with an and, as you saw in the larger snippet above, you’d need
a bunch of extra labels and jumps for each term.

What about mixed compound statements?

1 if (a > 10 || c > 100 && b >= c)
2 printf("true\n");
3
4 b |= 0xAA;

Well, the first thing to remember is that && has a higher priority than ||, which is why most
compilers these days will give a warning for the above code about putting parenthesis around the
&& expression to show you meant it (even though it’s completely legal as is).

So with that in mind, let’s change it to jump format to better see what we need to do. While we’re at
it, let’s apply De Morgan’s law to the &&.

 1 if (a > 10)
 2 goto do_true;
 3 if (c <= 100)

23

 4 goto done_if;
 5 if (b < c)
 6 goto done_if;
 7 do_true:
 8 printf("true\n");
 9
10 done_if:
11 b |= 0xAA;

This one is trickier because we don’t flip the initial expression like normal. Instead of jumping over
the body which would require testing for the opposite, we jump to the true case. We do this because
we don’t want to have multiple print statements and it lets us fall through the following conditions.
We would need multiple print statements because failure for the first expression is not failure for
the entire expression. Here’s how it would look otherwise:

 1 if (a <= 10)
 2 goto check_and;
 3 printf("true\n");
 4 goto done_if;
 5 check_and:
 6 if (c <= 100)
 7 goto done_if;
 8 if (b < c)
 9 goto done_if;
10
11 printf("true\n");
12
13 done_if:
14 b |= 0xAA;

That is harder to read and has both an extra print and an extra jump.

So let’s convert the better version to MIPS (a,b,c = $t0, $t1, $t2):

 1 .data
 2 true_str: .asciiz "true\n"
 3
 4 .text
 5 li $t8, 10 # get the necessary literals in some unused regs
 6 li $t9, 100
 7
 8 bgt $t0, $t8, do_true # if (a > 10) goto do_true
 9 ble $t2, $t9, done_if # if (c <= 100) goto done_if
10 blt $t1, $t2, done_if # if (b < c) goto done_if
11
12 do_true:
13 li $v0, 4 # print string
14 la $a0, true_str # address of str in a0

24

15 syscall
16
17 done_if:
18 ori $t1, $t1, 0xAA # b |= 0xAA

If-Else Chain

Ok, let’s look at a larger example. Say you’re trying to determine a student’s letter grade based on
their score. We’re going to need a chain of if-else-if's to handle all cases. Assume score is declared
and set somewhere before.

 1 #include <stdio.h>
 2
 3 int main()
 4 {
 5 int score;
 6 char letter_grade;
 7 printf("Enter your score: ");
 8 scanf("%d", &score);
 9 if (score >= 90) {
10 letter_grade = 'A';
11 } else if (score >= 80) {
12 letter_grade = 'B';
13 } else if (score >= 70) {
14 letter_grade = 'C';
15 } else if (score >= 60) {
16 letter_grade = 'D';
17 } else {
18 letter_grade = 'F';
19 }
20 printf("You got a %c\n", letter_grade);
21 return 0;
22 }

With chains like these, if you follow everything we’ve learned, it comes out looking like this
(assuming score is $t0 and letter_grade is $t1):

 1 .data
 2 prompt: .asciiz "Enter your score: "
 3 grade_str: .asciiz "You got a "
 4
 5 .text
 6 main:
 7 li $v0, 4 # print str
 8 la $a0, prompt
 9 syscall
10
11 li $v0, 5 # read int

25

12 syscall
13
14 move $t0, $v0 # move score into t0
15 li $t1, 70 # letter_grade default to 'F' ascii value
16
17 li $t2, 90
18 blt $t0, $t2, not_a # if (score < 90) goto not_a
19 li $t1, 65 # leter_grade = 'A'
20 j grade_done
21
22 not_a:
23 li $t2, 80
24 blt $t0, $t2, not_b # if (score < 80) goto not_b
25 li $t1, 66 # leter_grade = 'B'
26 j grade_done
27
28 not_b:
29 li $t2, 70
30 blt $t0, $t2, not_c # if (score < 70) goto not_c
31 li $t1, 67 # leter_grade = 'C'
32 j grade_done
33
34 not_c:
35 li $t2, 60
36 blt $t0, $t2, grade_done # if (score < 60) goto grade_done
37 li $t1, 68 # leter_grade = 'D'
38
39 grade_done:
40 li $v0, 4 # print str
41 la $a0, grade_str
42 syscall
43
44 li $v0, 11 # print character
45 move $a0, $t1 # char to print
46 syscall
47
48 li $a0, 10 # print '\n'
49 syscall
50
51 li $v0, 10 # exit
52 syscall

You can see how we set a default value and then test for the opposite of each condition to jump to
the next test, until we get one that fails (aka was true in the original C condition) and set the
appropriate grade.

You can arrange chains like this in either direction, it doesn’t have to match the order of the C code.
As long as it works the same, do whatever makes the code simpler and more sensible to you.

26

Conclusion
Branching and logic and learning to translate from higher level code to assembly is something that
takes a lot of practice, but eventually it’ll become second nature. We’ll get more practice in the
chapter on looping which naturally also involves branching.

One final note, there’s really no reason to use the slt family of opcodes unless your professor
requires it, ie he says you can’t use pseudoinstructions so you’re left with beq, bne, j and the slt ops.
I’ll show how you can code without using pseudoinstructions in a later chapter.

Exercises
You can support the book and purchase the chapter exercise solutions from my store or Leanpub.

1. Convert the following C code to MIPS.

 1 #include <stdio.h>
 2
 3 int main()
 4 {
 5 int num;
 6 printf("Enter an integer: ");
 7 scanf("%d", &num);
 8
 9 if (num > 50) {
10 puts("The number is greater than 50");
11 } else if (num < 50) {
12 puts("The number is less than 50");
13 } else {
14 puts("You entered 50!");
15 }
16
17 return 0;
18 }

2. Prompt for the user’s name, then tell them whether their name starts with a letter from the first
or second half of the alphabet. Be sure to handle both upper and lower case correctly, but
assume they entered a valid letter.

[1] https://inst.eecs.berkeley.edu/~cs61c/resources/MIPS_Green_Sheet.pdf

[2] https://en.wikipedia.org/wiki/De_Morgan%27s_laws

27

https://store.robertwinkler.com/
https://leanpub.com/mipsassemblyprogrammming
https://inst.eecs.berkeley.edu/~cs61c/resources/MIPS_Green_Sheet.pdf
https://en.wikipedia.org/wiki/De_Morgan%27s_laws

Chapter 4: Loops
"Insanity is doing the same thing over and over again and expecting
different results."

— Unknown, Often misattributed to Albert Einstein

Before we get into the MIPS, I want to cover something that may be obvious to some but may have
never occurred to others. Any loop structure can be converted to any other (possibly with the
addition of an if statement). So a for can be written as a while and vice versa. Even a do-while can
be written as a for or while loop. Let’s look at some equivalencies.

 1 for (int i=0; i<a; i++) {
 2 do_something;
 3 }
 4
 5 int i = 0;
 6 while (i < a) {
 7 do_something;
 8 i++;
 9 }
10
11 int i = 0;
12 if (i < a) {
13 do {
14 do_something;
15 i++;
16 } while (i < a);
17 }
18 // you could also have an if (i >= a) goto loop_done; to jump over do-while

In general, when writing assembly, it can help to think more in terms of while or do-while rather
than for because the former more closely resemble what the assembly looks like in terms of what
goes where. Like in the last chapter, where we would think of the if-else statements in "jump-
form" or "branch-form", we can do the same here, converting for to while in our head as an
intermediary step before going to assembly.

Speaking of "jump-form", lets apply it to the loop above:

 1 int i=0;
 2 if (i >= a)
 3 goto done_loop;
 4 loop:
 5 do_something;
 6 i++
 7 if (i < a)
 8 goto loop;

28

 9
10 done_loop:

You can see how that starts to look more like assembly. Another thing to note is that unlike with if
statements where we test for the opposite to jump over the block of code, when you’re doing the
loop test at the bottom like with a do-while, it is unchanged from C because you are jumping to
continue the loop. If you put the test at the top it becomes inverted, and you put an unconditional
jump at the bottom:

1 int i=0;
2 loop:
3 if (i >= a)
4 goto done_loop;
5 do_something;
6 i++
7 goto loop:
8
9 done_loop:

In general it’s better to test at the bottom, both because the condition matches the higher level form,
and because when you know the loop is going to execute at least once it requires only one jump +
label, rather than 2 since you can forgo the the initial if check:

 1 for (int i=0; i<10; i++)
 2 do_something;
 3
 4 // becomes
 5
 6 int i=0;
 7 loop:
 8 do_something;
 9 i++
10 if (i < 10)
11 goto loop;

Ok, now that we’ve got the theory and structure out of the way, let’s try doing a simple one in MIPS.

1 int sum = 0;
2 for (int i=0; i<100; i++) {
3 sum += i;
4 }

That’s about as basic as it gets, adding up the numbers 0 to 99.

1 li $t0, 0 # sum = 0
2 li $t1, 1 # i = 1 we can start at 1 because obviously adding 0 is

29

 pointless
3 li $t2, 100
4 loop:
5 addi $t0, $t0, $t1 # sum += i
6 addi $t1, $t1, 1 # i++
7 blt $t1, $t2, loop # while (i < 100)

Ok I don’t think there’s much point in doing any more without getting to what loops are most often
used for, looping through data structures, most commonly arrays.

Looping Through Arrays
Looping and arrays go together like peanut butter and jam. An array is a sequence of variables of
the same type, almost always related in some way. Naturally, you want to operate on them all
together in various ways; sorting, searching, accumulating, etc. Given that the only way to do that is
with loops, in this section we’ll cover different ways of looping through arrays, including
multidimensional arrays.

1D Arrays

Let’s pretend there’s an array int numbers[10]; filled with 10 random numbers.

1 int total = 0;
2 for (int i=0; i<10; i++) {
3 total += numbers[i];
4 }

There are several ways to do this. The first is the most literal translation.

 1 li $t0, 0 # total = 0
 2 li $t1, 0 # i = 0
 3 la $t2, numbers # t2 = numbers
 4 li $t3, 10
 5 sum_loop:
 6 sll $t4, $t1, 2 # t4 = i*sizeof(int) == i*4
 7 add $t4, $t4, $t2 # t4 = &numbers[i]
 8 lw $t4, 0($t4) # t4 = numbers[i]
 9 add $t0, $t0, $t4 # total += numbers[i]
10
11 addi $t1, $t1, 1 # i++
12 blt $t1, $t3, sum_loop # while (i < 10)

We initialize the relevant variables beforehand (numbers and 10 could be loaded every iteration but
that’s less efficient). Now what’s with the i*4? We already discussed using shifts to multiply and
divide by powers of 2 in a previous chapter, but here we’re doing something that higher level
languages do automatically for you every time you do an array access. When you access the i'th
element, under the hood it is multiplying i by the size of the type of the array and adding that

30

number of bytes to the base address and then loading the element located there.

If you’re unfamiliar with the C syntax in the comments, & means "address of", so $t4 is being set to
the address of the i'th element. Actually that C syntax is redundant because the the & counteracts
the brackets. In C adding a number to a pointer does pointer math (ie it multiplies by the size of the
items as discussed above). This means that the following comparison is true:

&numbers[i] == numbers + i

which means that this is true too

&numbers[0] == numbers

The reason I use the form on the left in C/C++ even when I can use the right is it makes it more
explicit and obvious that I’m getting the address of an element of an array. If you were scanning the
code quickly and saw the expression on the right, you might not realize that’s an address at all, it
could be some mathematical expression (though the array name would hopefully clue you in if it
was picked well).

Anyway, back to the MIPS code. After we get the address of the element we want, we have to
actually read it from memory (ie load it). Since it’s an array of words (aka 4 byte ints) we can use
load word, lw.

Finally, we add that value to total, increment i, and perform the loop check.

Now, I said at the beginning that this was the most literal, direct translation (not counting the
restructuring to a do-while form). However, it is not my preferred form because it’s not the
simplest, nor the shortest.

Rather than calculate the element address every iteration, why not keep a pointer to the current
element and iterate through the array with it? In C what I’m suggesting is this:

1 int* p = &numbers[0];
2 int i = 0, total = 0;
3 do {
4 total += *p;
5 i++;
6 p++;
7 } while (i < 10);

In other words, we set p to point at the first element and then increment it every step to keep it
pointing at numbers[i]. Again, all mathematical operations on pointers in C deal in increments of the
byte syze of the type, so p++ is really adding 1*sizeof(int).

 1 li $t0, 0 # total = 0
 2 li $t1, 0 # i = 0
 3 la $t2, numbers # p = numbers
 4 li $t3, 10
 5 sum_loop:
 6 lw $t4, 0($t2) # t4 = *p

31

 7 add $t0, $t0, $t4 # total += *p
 8
 9 addi $t1, $t1, 1 # i++
10 addi $t2, $t2, 4 # p++ ie p += sizeof(int)
11 blt $t1, $t3, sum_loop # while (i < 10)

Now, that may not look much better, we only saved 1 instuction, and if we were looping through a
string (aka an array of characters, sizeof(char) == 1) we wouldn’t have saved any. However,
imagine if we weren’t using sll to do the multiply but mult. That would take 3 instructions, not 1.
Even mul would take 2. Remember we would have to use one of those if we were iterating through
an array of structures with a size that wasn’t a power of 2.

However, there is one more variant that you can use that can save a few more instructions. Instead
of using i and i<10 to control the loop, use p and the address just past the end of the array. In C it
would be this:

1 int* p = &numbers[0];
2 int* end = &numbers[10];
3 int total = 0;
4 do {
5 total += *p;
6 p++;
7 } while (p < end);

You could also use != instead of <. This is similar to using the .end() method on many C++ data
structures when using iterators. Now the MIPS version:

1 li $t0, 0 # total = 0
2 la $t2, numbers # p = numbers
3 addi $t3, $t2, 40 # end = &numbers[10] = numbers + 10*sizeof(int)
4 sum_loop:
5 lw $t4, 0($t2) # t4 = *p
6 add $t0, $t0, $t4 # total += *p
7
8 addi $t2, $t2, 4 # p++ ie p += sizeof(int)
9 blt $t2, $t3, sum_loop # while (p < end)

So we dropped from 10 to 7 instructions and even more if we had had to do mul or mult originally.
And this was for a 1D array. Imagine if you had 2 or 3 indices you had to use to calculate the correct
offset. That’s what we go over in the next section.

2D Arrays

The first thing to understand is what’s really happening when you declare a 2D array in C. The
contents of a 2D array are tightly packed, in row-major order, meaning that all the elements from
the first row are followed by all the elements of the second row and so on. What this means is that a
2D array is equivalent to a 1D array with rows*cols elements in the same order:

32

1 #define ROWS 2
2 #define COLS 4
3 // The memory of these two arrays are identical
4 int array[ROWS][COLS] = { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } };
5 int array1d[ROWS*COLS] = { 1, 2, 3, 4, 5, 6, 7, 8 };

See the code example 2d_arrays.c for more details.

What this means is that when we declare a 2D array, it’s basically a 1D array with the size equal to
rows * columns. Also, when we loop through a 2D array, we can often treat it like a 1D array with a
single loop. So everything that we learned before applies.

Let’s do an example.

 1 for (int i=0; i<rows; i++) {
 2 for (int j=0; j<cols; ++j) {
 3 array[i][j] = i + j;
 4 }
 5 }
 6
 7 // becomes
 8
 9 int r, c;
10 for (int i=0; i<rows*cols; i++) {
11 r = i / cols;
12 c = i % cols;
13 array[i] = r + c;
14 }

So assuming rows and cols are in $a0 and $a1 (and nonzero), it would look like this:

 1 la $t0, array # p = &array[0]
 2 li $t1, 0 # i = 0
 3 mult $a0, $a1 # a0 = rows, a1 = cols
 4 mflo $t2 # t2 = rows * cols
 5 loop:
 6 div $t1, $a1
 7 mflo $t3 # r = i / cols
 8 mfhi $t4 # c = i % cols
 9 add $t3, $t3, $t4 # t3 = r + c
10
11 sw $t3, 0($t0) # array[i] = *p = r + c
12
13 addi $t1, $t1, 1 # i++
14 addi $t0, $t0, 4 # p++ (keep pointer in sync with i, aka p = &array[i])
15 blt $t1, $t2, loop # while (i < rows*cols)

33

https://raw.githubusercontent.com/rswinkle/mips_book/master/code/2d_arrays.c

You might ask if it’s it worth it to convert it to a single loop when you still need the original i and j
as if you were doing nested loops. Generally, it is much nicer to avoid nested loops in assembly if
you can. There are many cases when you get the best of both worlds though. If you’re doing a clear
for example, setting the entire array to a single value, there’s no need to calculate the row and
column like we did here. I only picked this example to show how you could get them back if you
needed them.

For comparison here’s the nested translation (while still taking advantage of the 1D arrangement of
memory and pointer iterators):

 1 la $t0, array # p = &array[0]
 2 li $t1, 0 # i = 0
 3 looprows:
 4 li $t2, 0 # j = 0
 5 loopcols:
 6 add $t3, $t1, $t2 # t3 = i + j
 7 sw $t3, 0($t0) # array[i][j] = *p = i + j
 8
 9 addi $t2, $t2, 1 # j++
10 addi $t0, $t0, 4 # p++ (keep pointer in sync with i and j, aka p =
 &array[i][j])
11 blt $t2, $a1, loopcols # while (j < cols)
12
13 addi $t1, $t1, 1 # i++
14 blt $t1, $a0, looprows # while (i < rows)

It’s a bit shorter but again, how much are the extra label and branch worth? For me, this one’s a
toss up. On the other hand, either of the last 2 versions are better than the literal translation below:

 1 la $t0, array # p = &array[0]
 2 li $t1, 0 # i = 0
 3 looprows:
 4 li $t2, 0 # j = 0
 5 loopcols:
 6 add $t3, $t1, $t2 # t3 = i + j
 7
 8 # need to calculate the byte offset of element array[i][j]
 9 mult $t1, $a1
10 mflo $t4 # i * cols
11
12 add $t4, $t4, $t2 # t4 = i * cols + j
13
14 sll $t4 $t4, 2 # t4 = (i * cols + j) * sizeof(int)
15 add $t4, $t4, $t0 # t4 = &array[i][j] (calculated as array + (i*cols +
 j)*4)
16
17 sw $t3, 0($t4) # array[i][j] = i + j
18
19 addi $t2, $t2, 1 # j++

34

20 blt $t2, $a1, loopcols # while (j < cols)
21
22 addi $t1, $t1, 1 # i++
23 blt $t1, $a0, looprows # while (i < rows)

That chunk in the middle calculating the offset of every element? Not only is it far slower than
iterating the pointer through the array, but you can imagine how much worse it would be for a 3D
array with 3 nested loops.

Conclusion
Hopefully after those examples you have a more solid understanding of looping in MIPS and how to
transform various loops and array accesses into the form that makes your life the easiest. There is
more we could cover here, like looping through a linked list, but I think that’s beyond the scope of
what we’ve covered so far. Perhaps in a later chapter.

Exercises
You can support the book and purchase the chapter exercise solutions from my store or Leanpub.

1. Convert the following C code to MIPS. If using SPIM, you can just hard code a "random" number
between 0 and 100.

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3
 4 int main()
 5 {
 6 int num = rand() % 101
 7 int guess;
 8 puts("I'm thinking of a number 0-100. Try to guess it!");
 9 while (1) {
10 printf("Guess a number: ");
11 scanf("%d", &guess);
12
13 if (guess > num) {
14 puts("Too high!");
15 } else if (guess < num) {
16 puts("Too low!");
17 } else {
18 break;
19 }
20 }
21
22 printf("Correct, it was %d!\n", num);
23
24 return 0;
25 }

35

https://store.robertwinkler.com/
https://leanpub.com/mipsassemblyprogrammming

2. Write a MIPS program to find and print the average of the following array. Use integer division.

1 .data
2 array: .word 93,8,78,-6,51,49,3,2,128,0

3. Write a program to find the min and max of the array in the previous exercise

36

Chapter 5: Functions and the MIPS Calling
Convention
While I’m sure everyone here probably knows what functions are, you might be wondering what a
"Calling Convention" is. In short, it is an agreement between the caller and callee about how to
treat/use certain registers. We’ll get to the why and how later.

Functions
In assembly, a function is simply a label with a return instruction associated with it; because this is
far more ambiguous than a function in a higher level language, it is good practice to only have a
single return instruction associated with a function.[1] A comment above the label is also helpful.
Together those help you quickly see the start and end of the function.

1 void func1() {}

would be

1 # void func1()
2 func1:
3 # body goes here
4 jr $ra

As you can see my policy is to put a single line comment of the C prototype above label.

But how do you call a function in assembly? You use the instruction Jump and Link: jal func_label.
Let’s change the hello world program from chapter 0 to call a function:

 1 .data
 2 hello: .asciiz "Hello World!\n"
 3
 4 .text
 5 main:
 6 jal hello_world
 7
 8 li $v0, 10 # exit syscall
 9 syscall
10
11
12 # void hello_world()
13 hello_world:
14 li $v0, 4 # print string system call
15 la $a0, hello # load address of string to print into a0
16 syscall
17

37

18 jr $ra

What jal actually does, is save the address of the next instruction to $ra and then do an
unconditional jump to the function label. So you could achieve the same results with the following:

 jal func

 # is equivalent to

 la $ra, next_instr
 j func
next_instr:

That would get tiring and ugly fast though, having to come up with unique labels for the next
instruction every time. You also might be confused about why the greensheet says jal saves PC+8 in
$ra instead of PC+4. The reason is that MIPS technically has delayed branching, i.e. a single
instruction after every branch instruction is executed before the jump actually happens. So jal
adds 8 instead of 4 to account for that extra instruction delay. However, every simulator we’ve
mentioned does non-delayed branching by default so you can ignore it.

The Convention
We’ve gone as far as we can without starting to talk about registers and their purposes in functions.
You can think of registers as variables[2] that are part of the CPU. In this case, since we’re dealing
with a 32-bit MIPS architecture, they are 32-bit (aka 4 bytes, 1 word) variables. Since they’re part of
the CPU, they exist for the life of the program and the whole program shares the same registers.

But how does that work? If all parts of the program use the same 32 registers, how does one
function not stomp all over what another was doing when it uses them? In fact, how do functions
communicate at all? How do they pass arguments or return results? All these questions are solved
by deciding on a "Calling Convention". It’s different for different architectures and even different
operating systems on the same architecture. This is because different architectures have different
numbers of registers, and some registers like $ra have hardcoded uses. The op jal modifies $ra, and
$0 is a constant 0 and there’s no way to change either of those facts. That still leaves a lot of
flexibility when designing a calling convention. While they mostly match, you’ll find several
variations of MIPS calling conventions online. They usually differ in how they setup a stack frame.
The convention covered in this chapter is consistent with, and sufficient for, almost every college
course I’ve ever heard of.

Regardless, what matters is that the calling convention works by setting rules (and guidelines) for
register use, and when/how to use the stack.

If you’re unfamiliar with the runtime stack, it’s exactly what it sounds like. It’s a Last-In-First-Out
(LIFO) data structure that you can use to store smaller values in a program. It grows in a negative
direction, so to allocate 12 bytes, you would subtract 12 from the stack pointer (in MIPS that’s $sp).

MIPS specifically designates certain registers to be used for passing arguments (at least the first 4),

38

others for return values, and others for misc. temporary or saved values. The rest are special use
registers like $ra.

The quickest way to summarize is to look at the table on the greensheet which is reproduced (with
some modifications) below:

Table 4. MIPS Registers and Uses

Name Number Use Preserved
Across a Call

$zero 0 Constant 0 N.A.

$at 1 Assembler Temporary (used to expand pseudo-
ops)

No

$v0-$v1 2-3 Function Results and Expression Evaluation No

$a0-$a3 4-7 Arguments No

$t0-$t7 8-15 Temporaries No

$s0-$s7 16-23 Saved Temporaries Yes

$t8-$t9 24-25 Temporaries No

$k0-$k1 26-27 Reserved for OS Kernel No

$gp 28 Global Pointer Yes

$sp 29 Stack Pointer Yes

$fp (or $s8) 30 Frame Pointer if necessary or can be another
saved reg

Yes

$ra 31 Return Address No

To summarize, you have 16 registers that can be used anytime for temporary values, though some
have special uses too (the v, a, and t registers). You have 8 s registers that have to be saved on the
stack if you use them, plus $ra as well. The $zero register is obviously a special case.

The $sp register is technically preserved but not in the same way. Basically what you allocate
(subtract) you have to deallocate (add) before returning from a function, thus preserving the
original value.

You can ignore $at, $k0-$k1, $gp and most of the time $fp too. In over 7 years of tutoring I’ve
helped students with MIPS from at least 2 dozen different colleges and I think I’ve only seen a
professor force his students to use $fp or pass more than 4 arguments twice. You can see[3] register
30 sometimes referred to as $s8 rather than, or in addition to, $fp which shows you how rarely it’s
actually used/needed as a frame pointer.

Basic example

Let’s start with something simple that doesn’t use the stack.

int hello_name_number(char* name, int number)

39

{
 printf("Hello %s!\n", name);
 return number + 10;
}

According to the convention that becomes:

 1 .data
 2 hello_space: .asciiz "Hello "
 3 exclaim_nl: .asciiz "!\n"
 4
 5 .text
 6 # int hello_name_number(char* name, int number)
 7 hello_name_number:
 8 move $t0, $a0 # save name in t0 since we need a0 for the syscall
 9
10 li $v0, 4 # print string
11 la $a0, hello_space
12 syscall
13
14 move $a0, $t0 # print name (v0 is still 4)
15 syscall
16
17 la $a0, exclaim_nl # print "!\n"
18 syscall
19
20
21 addi $v0, $a1, 10 # return number + 10
22 jr $ra

Some things to note, syscalls are not function calls so we can "save" $a0 in a t register and know that
it’ll still be there when the syscall is done. In the same way, we know that $v0 is still the same so we
don’t have to keep setting it to 4 for print string. Lastly, to return a value, we make sure that value is
in $v0 before returning.

Using the Stack

First, let’s establish the rules on when you have to use the stack (You can always use it for arbitrary
local variables, like a local array for example, but generally don’t if you don’t have a good reason).

1. You call another function, ie you’re a non-leaf function.

This means you have to save $ra on the stack at the very least, otherwise when you do your jr
$ra you’d jump back into yourself (right after the last jal instruction). This does not apply to
main because you don’t/shouldn’t return from main, you should call the exit (or exit2) syscall
(10 or 17).

2. You need to save values across a function call (automatically includes reason 1).

40

This is fairly common for non-trivial functions. Obvious examples are calling a function in a
loop or loops (you’d have to preserve the iterator(s)), and many recursive functions.

3. You run out of temporary registers and overflow into the s registers.

This is very rare. The most common reason this "happens" is people forget they have 10 t
registers instead of 8 like s registers and even if they remember that they forget they can also
use the a and v registers for temporaries. 16 is more than enough to handle pretty much any
function because you rarely need 17 discrete values at the same time.

Let’s look at an example for the first two. Any example for the last rule would be prohibitively large
and complicated.

1 int non_leaf()
2 {
3 func1();
4 return 42
5 }

This calls the empty function discussed at the top of this chapter.

 1 #int non_leaf()
 2 non_leaf:
 3 addi $sp, $sp, -4 # space to save 1 register, $ra
 4 sw $ra, 0($sp) # store $ra in the newly allocated stack space
 5
 6 jal func1
 7
 8 li $v0, 42 # return 42
 9
10 lw $ra, 0($sp) # restore original $ra
11 addi $sp, $sp, 4 # pop the stack
12 jr $ra

The bit of code at the top and bottom of the function are called the prologue and epilogue
respectively for obvious reasons. We allocate 4 bytes on the stack by subtracting 4 (I add a negative
rather than subtract because I can copy-paste the line with a single character change for the
epilogue). Then we store the current $ra in that space at the new top of the stack. Then before we
exit we have to load it back and pop the stack.

If we didn’t save and restore $ra we would jump to line 7 when we do our jr $ra and then we’d be
in an infinite loop.

Next we have the second case, where we need to preserve regular local values across a function
call.

 1 void print_letters(char letter, int count)
 2 {

41

 3 for (int i=0; i<count; i++) {
 4 putchar(letter);
 5 }
 6 putchar('\n');
 7 }
 8
 9 int save_vals()
10 {
11 for (int i=0; i<10; i++) {
12 print_letters('A'+i, i+1);
13 }
14 return 8;
15 }

That becomes this in mips:

 1 #void print_letters(char letter, int count)
 2 print_letters:
 3 ble $a1, $0, exit_pl # if (count <= 0) goto exit_pl
 4 li $v0, 11 # print character
 5 pl_loop:
 6 syscall
 7 addi $a1, $a1, -1 # count--
 8 bgt $a1, $0, pl_loop # while (count > 0)
 9
10 li $a0, 10 # '\n'
11 syscall
12
13 exit_pl:
14 jr $ra
15
16
17 #int save_vals()
18 save_vals:
19 addi $sp, $sp, -12
20 sw $ra, 0($sp)
21 sw $s0, 4($sp)
22 sw $s1, 8($sp)
23
24 li $s0, 0 # i = 0
25 li $s1, 10
26 sv_loop:
27 addi $a0, $s0, 65 # i + 'A'
28 addi $a1, $s0, 1 # i + 1
29 jal print_letters
30
31 addi $s0, $s0, 1 # i++
32 blt $s0, $s1, sv_loop # while (i < 10)
33
34 lw $ra, 0($sp)

42

35 lw $s0, 4($sp)
36 lw $s1, 8($sp)
37 addi $sp, $sp, 12
38 jr $ra

Notice that for print_letters, we not only convert the loop to a do-while, but we also use the
parameter count as the iterator to count down to 0. It saves us an instruction initializing an i.

Second, for save_vals, we save not only $ra because we call another function, but also two s
registers to save i and our stopping point. The second is not actually necessary; because it’s a
constant, we could load 10 into a register right before the check every iteration of the loop. Which
version is better depends on several factors, like how long or complex the loop is, how many times
it executes, and of course personal preference.

Recursive Functions

Let’s do a classic recursive function, the fibonacci sequence.

1 int fib(int n)
2 {
3 if (n <= 1)
4 return n;
5
6 return fib(n-2) + fib(n-1);
7 }

You can see how, at the very least, we’ll have to save $ra and n, because we need the original even
after the first recursive call. It’s not as obvious, but we’ll also have to save the return value of the
first call so we’ll still have it to do the addition after the second. You might think this would require
using two s regs, but does it? Let’s see…

 1 #int fib(int n)
 2 fib:
 3 addi $sp, $sp, -8
 4 sw $ra, 0($sp)
 5 sw $s0, 4($sp)
 6
 7 move $v0, $a0 # prepare to return n
 8 li $t0, 1
 9 ble $a0, $t0, exit_fib # if (n <= 1) goto exit_fib (ie return n)
10
11 move $s0, $a0 # save n
12
13 addi $a0, $a0, -2 # a0 = n - 2
14 jal fib # fib(n-2)
15
16 addi $a0, $s0, -1 # a0 = n - 1, prep arg first so we can use s0 to save
 v0

43

17 move $s0, $v0 # save return of fib(n-2) in s0
18 jal fib # fib(n-1)
19
20 add $v0, $v0, $s0 # v0 = fib(n-1) + fib(n-2)
21
22 exit_fib:
23 lw $ra, 0($sp)
24 lw $s0, 4($sp)
25 addi $sp, $sp, 8
26 jr $ra

Notice how we don’t have to save n any sooner than necessary, ie right before we have to use $a0 to
setup the first recursive call. Also, the ordering of lines 16 and 17 is important. We needed the
original n to calculate n-1 but once that’s in $a0 ready for the call, because we won’t need n again
afterward, we can now use $s0 to preserve the return value of the first call.

Some of you, if you were paying attention, might point out that you could save a few instructions of
performance if you moved the base case testing before the prologue as long as you put the exit label
after the epilogue. This is true, but I’d recommend against it unless you were really trying to eke out
every last microsecond. It’s nicer/cleaner to keep the prologue and epilogue as the first and last
things; they’re one more thing to catch your eye and help delineate where functions start and end.
Regardless, if you’re curious, you can see that version, along with every other function in this
chapter in the included program calling.s.

Conclusion
While grasping the basics of a calling convention is not too difficult, it takes practice to get used to
it. There are many things that we haven’t covered in this chapter, like how to pass more than 4
arguments, or use $fp, or handle floating point arguments or return values. The latter at least, will
be covered in the next chapter.

Exercises
You can support the book and purchase the chapter exercise solutions from my store or Leanpub.

1. Implement the following functions in MIPS and write a program to demonstrate their use. You
can reuse much of your code from the previous chapter’s exercises.

 1 // return the min or max
 2 int get_min(int* array, int size);
 3 int get_max(int* array, int size);
 4
 5 // return the index of the min/max
 6 int locate_min(int* array, int size);
 7 int locate_max(int* array, int size);
 8
 9 // return the average of the array

44

https://raw.githubusercontent.com/rswinkle/mips_book/master/code/calling.s
https://store.robertwinkler.com/
https://leanpub.com/mipsassemblyprogrammming

10 int calc_average(int* array, int size);

2. The Collatz conjecture is defined as follows: start with any positive integer n, if n is even, divide
by 2, otherwise, multiply by 3 and add 1. The conjecture is that all sequences will eventually
reach 1. Write 2 versions of the collatz function, one iterative and one recursive. Print out the
sequence as they go.

1 void collatz_iterative(int n);
2 void collatz_recursive(int n);
3
4 // for an added challenge return the number of steps taken to reach 1
5 // you can remove the printing of the steps
6 int collatz_iterative2(int n);
7 int collatz_recursive2(int n);

[1] I do not agree with an ironclad "one return" policy in higher level languages. Sometimes returning early results in cleaner code,
sometimes not. Similarly, `goto` is not evil and there are rare cases where using it creates the best code.

[2] Obviously the zero register is not really a variable. I never understood how people could say "const variable" with a straight
face, it’s literally an oxymoron.

[3] It’s an old link, but not as old as SPIM so maybe using it for a frame pointer was added later

45

https://www.cs.uaf.edu/2000/fall/cs301/notes/notes/node66.html

Chapter 6: Floating Point Types
Up to this point we haven’t really mentioned floating point values or instructions at all, except how
to declare them in the .data section and the syscalls for reading and printing them. There are two
reasons we’ve left them alone till now. First, they use a whole separate set of registers and
instructions. Second, and partly because of the first reason, most MIPS college courses do not ever
require you to know or use floating point values. Since this book is targeted at college students, if
you know you won’t need to know this feel free to skip this chapter.

Floating Point Registers and Instructions
While the greensheet contains a nice table for the normal registers it is completely lacking for the
floating point registers. There are 32 32-bit floating point registers. You can use them all for floats
but they are paired even-odd for doubles. In other words, you can only use even numbers for
doubles, because storing a double at $f0 actually uses $f0 and $f1 because it takes 64 bits/8 bytes.

As far as the calling conventions for floating point registers, it is actually hard to find anything
definitive and clear even for the basics. You could make up your own but the float/double syscalls,
and the tiny code snippet in Patterson and Hennessy were at least consistent with this old
website[1] so we’ll go with that. I have seen at least one course page where the prof wanted all float
registers preserved which seems excessive and ridiculous but prof’s are gonna prof.

Table 5. MIPS Floating Point Registers and Uses

Name Use Preserved Across a Call

$f0-$f2 Function Results No

$f4-$f10 Temporaries No

$f12-f14 Arguments No

$f16-f18 Temporaries No

$f20-f30 Saved Temporaries Yes

This table is based on doubles so it may look like it’s skipping odd registers but they’re included
where the even they’re paired with is. So, for example you actually have 4 registers for float
arguments $f12 through $f15 but only 2 for doubles $f12 and $f14. Similarly you have 12 saved
registers for floats but 6 for doubles.

You might find things like this, which seems to say that SPIM doesn’t support using the odd registers
at all but both example programs for this chapter use $f1 and work with both SPIM and MARS.
Given that, and the fact that it references instructions [l.d] and [l.s] which don’t work (li.s and li.d
do, see below), it’s probably really out of date.

Most of the next table is actually on the Greensheet but not all of it and I thought it worth
reproducing here.

Table 6. MIPS floating point instructions (and pseudoinstructions)

46

https://techpubs.jurassic.nl/manuals/0630/developer/Mpro_n32_ABI/sgi_html/ch02.html
https://microcontrollerslab.com/mips-floating-point-architecture-using-pcspim/
https://amzn.to/3zN71KP
https://www.dsi.unive.it/~architet/LAB/spim.htm#Floating%20Point

Name Opcode Format Operation

Load Word to Coprocessor 1 lwc1 (or
l.s)

lwc1 ft, n(rs) F[ft] = M[R[rs]+n]

Store Word from Coprocessor 1 swc1 (or
s.s)

swc1 ft, n(rs) M[R[rs]+n] = F[ft]

Load Double to Coprocessor 1 ldc1 (or l.d) ldc1 ft, n(rs) F[ft] = M[R[rs]+n]

F[ft+1] = M[R[rs]+n+4]

Store Double from Coprocessor 1 sdc1 (or
s.d)

sdc1 ft, n(rs) M[R[rs]+n] = F[ft]

M[R[rs]+n+4] = F[ft+1]

Move From Coprocessor 1 mfc1 mfc1 rd, fs R[rd] = F[fs]

Move To Coprocessor 1 mtc1 mtc1 rd, fs F[fs] = R[rd]

Convert Word To Single Precision cvt.s.w cvt.s.w fd, fs F[fd] = (float)F[fs]

Convert Single Precision To Word cvt.w.s cvt.w.s fd, fs F[fd] = (int)F[fs]

Convert Word To Double Precision cvt.d.w cvt.d.w fd, fs F[fd] = (double)F[fs]

Convert Double Precision To Word cvt.w.d cvt.w.d fd, fs F[fd] = (int)F[fs]

Branch on FP True bc1t bc1t label if (FPcond) goto label;

Branch on FP False bc1f bc1f label if (!FPcond) goto label;

FP Compare c.y.x c.y.x fs, ft FPcond = (F[fs] op F[ft])
? 1 : 0

Absolute Value abs.x abs.x fs, ft F[fs] = (F[ft] > 0) ? F[ft] :
-F[ft]

Add add.x add.x fd, fs, ft F[fd] = F[fs] + F[ft]

Subtract sub.x sub.x fd, fs, ft F[fd] = F[fs] - F[ft]

Multiply mul.x mul.x fd, fs, ft F[fd] = F[fs] * F[ft]

Divide div.x div.x fd, fs, ft F[fd] = F[fs] / F[ft]

Negation neg.x neg.x fs, ft F[fs] = -F[ft]

Move mov.x mov.x fd, fs F[fd] = F[fs]

With all of the opcodes that end in .x, the x is either s for single precision or d for double precision.

The y in the Compare instructions are one of eq, lt, le. Naturally op would be the matching ==, <, ⇐.
Unfortunately, you don’t get not equal, greater than, or greater equal, even as pseudoinstructions,
but it’s easy enough to flip the order of operands or branch on the opposite result.

Practice
We’re going to briefly go over some of the more different aspects of dealing with floating point
numbers, but since most of it is the same but with a new set of registers and calling convention, we

47

won’t be rehashing most concepts.

Getting Floating Point Literals
The first thing to know when dealing with floats is how to get float (or double) literals into registers
where you can actually operate on them.

There are two ways. The first, and simpler way, is to declare them as globals and then use the lwc1
or ldw1 instructions:

 1 .data
 2 a: .float 3.14159
 3 b: .double 1.61
 4
 5 .text
 6 main:
 7
 8 la $t0, a
 9 lwc1 $f0, 0($t0) # get a into $f0
10
11 la $t0, b
12 ldc1 $f2, 0($t0) # get b into $f2-3
13
14 # other code here

The second way is to use the regular registers and convert the values. Of course this means unless
you want an integer value, you’d have to actually do it twice and divide, and even that would limit
you to rational numbers. It looks like this.

1 mtc1 $0, $f0 # move 0 to $f0 (0 integer == 0.0 float)
2
3 # get 4 to 4.0 in $f2
4 li $t0, 4
5 mtc1 $t0, $f2
6 cvt.s.w $f2, $f2 # convert 4 to 4.0

As you can see, other than 0 which is a special case, it requires at least 3 instructions, more than the
2 (or 1 if you load directly from the address) of the first method.

NOTE
There is a 3rd way that is even easier, but it’s only supported in SPIM. The
pseudoinstructions li.s and li.d work exactly like li except to load float and
double literals into float/double registers.

Branching
Branching based on floating point values is slightly different than normal. Instead of being able to

48

test and jump in a single convenient instruction, you have to test first and then jump in a second
instruction if the test was true or not. This is the same way x86 does it. The test sets a special
control/flag register (or a certain bit or bits in the register) and then all jumps are based on its state.

Using it looks like this:

 1 c.lt.s $f0, $f2 # fpcond = f0 < f2
 2 bc1t was_less # if (f0 < f2) goto was_less
 3
 4 # do something for f0 >= f2
 5
 6 j blah
 7 was_less:
 8
 9 # do something for f0 < f2
10
11 blah:

Functions
Finally, lets do a simple example of writing a function that takes a float and returns a float. I’m not
going to bother doing one for doubles because it’d be effectively the same, or doing one that
requires the stack, because the only differences from normal are a new set of registers and
knowing which ones to save or not from the table above.

So, how about a function to convert a fahrenheit temperature to celsius:

 1 .data
 2
 3 # 5/9 = 0.5 with 5 repeating
 4 fahrenheit2celsius: .float 0.5555555
 5
 6 .text
 7 # float convert_F2C(float degrees_f)
 8 convert_F2C:
 9 la $t0, fahrenheit2celsius
10 lwc1 $f0, 0($t0) # get conversion factor
11
12 # C = (F - 32) * 5/9
13 li $t0, 32
14 mtc1 $t0, $f1 # move int 32 to f1
15 cvt.s.w $f1, $f1 # convert to 32.0
16
17
18 sub.s $f12, $f12, $f1 # f12 = degrees - 32
19
20 mul.s $f0, $f0, $f12 # f0 = 0.555555 * f12
21

49

22 jr $ra

You can see we follow the convention with the argument coming in $f12 and the result being
returned in $f0. In this function we use both methods for getting a value into float registers; one we
load from memory and the other, being an integer, we move and convert.

Conclusion
As I said before, it is rare for courses to even bother covering floating point instructions or assign
any homework or projects that use them, but hopefully this brief overview, combined with the
knowledge of previous chapters is sufficient.

There are also 2 example programs conversions.s and calc_pi.s for you to study.

Exercises
You can support the book and purchase the chapter exercise solutions from my store or Leanpub.

1. Write a program to convert an input in minutes to hours.

2. Write the following functions and use them in a program.

1 float miles2kilometers(float miles);
2 float pounds2kilograms(float pounds);

[1] Besides, it’s, the same one we referenced last chapter about fp == s8

50

https://raw.githubusercontent.com/rswinkle/mips_book/master/code/conversions.s
https://raw.githubusercontent.com/rswinkle/mips_book/master/code/calc_pi.s
https://store.robertwinkler.com/
https://leanpub.com/mipsassemblyprogrammming
https://www.cs.uaf.edu/2000/fall/cs301/notes/notes/node66.html

Chapter 7: Tips and Tricks
This chapter is a grab bag of things you can do to improve your MIPS programs and make your life
easier.

Formatting
You may have noticed I have a general format I like to follow when writing MIPS (or any) assembly.
The guidelines I use are the following

1. 1 indent for all code excluding labels/macros/constants.

I use hard tabs set to a width of 4 but it really doesn’t matter as long as it’s just 1 indent
according to your preferences.

2. Use spaces to align the first operand of all instructions out far enough.

Given my 4 space tabs, this means column 13+ (due to syscall, though I often stop at 11). The
reason to use spaces is to prevent the circumstances that gave hard tabs a bad name. When you
use hard tabs for alignment, rather than indentation, and then someone else opens your code
with their tab set to a different width, suddenly everything looks terrible. Thus, tabs for
indentation, spaces for alignment. Or as is increasingly common (thanks Python), spaces for
everything but I refuse to do that to the poor planet.[1]

3. A comma and a single space between operands.

The simulators don’t actually require the comma but since other assembly
languages/assemblers do, you might as well get used to it. Besides I think it’s easier to read with
the comma, though that might be me comparing it to passing arguments to a function.

4. Comment every line or group of closely related lines with the purpose.

This is often simply the equivalent C code. You can relax this a little as you get more experience.

5. Use a blank line to separate logically grouped lines of code.

While you can smash everything together vertically, I definitely wouldn’t recommend it, even
less than I would in a higher level language.

6. Put the .data section at the top, similar to declaring globals in C.

There are exceptions for this. When dealing with a larger program with lots of strings, it can be
convenient to have multiple .data sections with the strings you’re using declared close to where
you use them. The downside is you have to keep swapping back and forth between .text and
.data.

Misc. General Tips
1. Try to use registers starting from 0 and working your way up.

51

It helps you keep track of where things are (esp. combined with the comments). This can fall
apart when you discover you forgot something or need to modify the code later and it’s often
not worth changing all the registers you’re already using so you can maintain that nice
sequence. When that happens I’ll sometimes just pick the other end of sequence (ie $t9 or $s7)
since if it’s out of order I might as well make it obvious.

2. Minimize your jumps, labels, and especially your level of nested loops.

This was already covered in the chapters on branching and loops but it bears repeating.

3. In your prologue save $ra first, if necessary, then all s regs used starting at $s0.

Then copy paste the whole thing to the bottom, move the first line to the bottom and change the
number to positive and change all the sw to lw.

func:
 addi $sp, $sp, -20
 sw $ra, 0($sp)
 sw $s0, 4($sp)
 sw $s1, 8($sp)
 sw $s2, 12($sp)
 sw $s3, 16($sp)

 # body of func here that calls another function or functions
 # and needs to preserve 4 values across at least one of those calls

 lw $ra, 0($sp)
 lw $s0, 4($sp)
 lw $s1, 8($sp)
 lw $s2, 12($sp)
 lw $s3, 16($sp)
 addi $sp, $sp, 20

Constants
One of the easiest things you can do to make your programs more readable is to use defined
constants in your programs. Both MARS and SPIM have ways of defining constants similar to how C
defines macro constants; ie they aren’t "constant variables" that take up space in memory, it’s as if a
search+replace was done on them right before assembling the program.

Let’s look at our Hello World program using constants for SPIM and MARS

SPIM:

 1 sys_print_str = 4
 2 sys_exit = 10
 3
 4 .data
 5 hello: .asciiz "Hello World!\n"

52

 6
 7 .text
 8 main:
 9 li $v0, sys_print_str
10 la $a0, hello # load address of string to print into a0
11 syscall
12
13 li $v0, sys_exit
14 syscall

MARS:

 1 .eqv sys_print_str 4
 2 .eqv sys_exit 10
 3
 4 .data
 5 hello: .asciiz "Hello World!\n"
 6
 7 .text
 8 main:
 9 li $v0, sys_print_str
10 la $a0, hello # load address of string to print into a0
11 syscall
12
13 li $v0, sys_exit
14 syscall

Macros
MARS supports function style macros that can shorten your code and improve readability in some
cases (though I feel it can also make it worse or be a wash).

The syntax looks like this:

 1 .macro macroname
 2 instr1 a, b, c
 3 instr2, b, d
 4 # etc.
 5 .end_macro
 6
 7 # or with parameters
 8 .macro macroname(%arg1)
 9 instr1 a, %arg1
10 instr2 c, d, e
11 # etc.
12 .end_macro

53

Some common examples are using them to print strings:

 1 .macro print_str_label(%x)
 2 li $v0, 4
 3 la $a0, %x
 4 syscall
 5 .end_macro
 6
 7 .macro print_str(%str)
 8 .data
 9 str: .asciiz %str
10 .text
11 li $v0, 4
12 la $a0, str
13 syscall
14 .end_macro
15
16 .data
17
18 str1: .asciiz "Hello 1\n"
19
20 .text
21 # in use:
22 print_str_label(str1)
23
24 print_str("Hello World\n")
25
26 ...

You can see an example program in macros.s.

Unfortunately, as far as I can tell, SPIM does not support function style macros despite what MARS’s
documentation implies about using a $ instead of a % for arguments.

Switch-Case Statements
It is relatively common in programming to compare an integral type variable (ie basically any built-
in type but float and double) against a bunch of different constants and do something different
based on what it matches or if it matches none.

This could be done with a long if-else-if chain, but the longer the chain the more likely the
programmer is to choose a switch-case statement instead.

Here’s a pretty short/simple example in C:

 1 printf("Enter your grade (capital): ");
 2 int grade = getchar();
 3 switch (grade) {
 4 case 'A': puts("Excellent job!"); break;

54

https://raw.githubusercontent.com/rswinkle/mips_book/master/code/macros.s

 5 case 'B': puts("Good job!"); break;
 6 case 'C': puts("At least you passed?"); break;
 7 case 'D': puts("Probably should have dropped it..."); break;
 8 case 'F': puts("Did you even know you were signed up for the class?"); break;
 9 default: puts("You entered an invalid grade!");
10 }

You could translate this to its eqivalent if-else chain and handle it like we cover in the chapter on
branching. However, imagine if this switch statment had a dozen cases, two dozen etc. The MIPS
code for that quickly becomes long and ugly.

So what if we implemented it in MIPS the same way it is semantically in C? The same way compilers
often (but not necessarily) use? Well, before we do that, what is a switch actually doing? It is
jumping to a specific case label based on the value in the specified variable. It then starts executing,
falling through any other labels, till it hits a break which will jump to the end of the switch block. If
the value does not have its own case label, it will jump to the default label.

Compilers handle it by creating what’s called a jump table, basically an array of label addresses,
and using the variable to calculate an index in the table to use to jump to.

The C eqivalent of that would look like this:

 1 #include <stdio.h>
 2
 3
 4 // This compiles with gcc, uses non-standard extension
 5 // https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
 6
 7 int main()
 8 {
 9
10 // jump table
11 void* switch_table[] =
12 { &&a_label, &&b_label, &&c_label, &&d_label, &&default_label, &&f_label };
13
14 printf("Enter your grade (capital): ");
15 int grade = getchar();
16 grade -= 'A'; // shift to 0
17
18 if (grade < 0 || grade > 'F'-'A')
19 goto default_label;
20
21 goto *switch_table[grade];
22
23 a_label:
24 puts("Excellent job!");
25 goto end_switch;
26
27 b_label:
28 puts("Good job!");

55

29 goto end_switch;
30
31 c_label:
32 puts("At least you passed?");
33 goto end_switch;
34
35 d_label:
36 puts("Probably should have dropped it...");
37 goto end_switch;
38
39 f_label:
40 puts("Did you even know you were signed up for the class?");
41 goto end_switch;
42
43 default_label:
44 puts("You entered an invalid grade!");
45
46
47 end_switch:
48
49
50 return 0;
51 }

The && and goto *var syntax are actually not standard C/C++ but are GNU extensions that are
supported in gcc (naturally) and clang, possibly others.[2]

First, notice how the size of the jump table is the value of the highest valued label minus the lowest
+ 1. That’s why we subtract the lowest value to shift the range to start at 0 for the indexing. Second,
any values without labels within that range are filled with the default_label address. Third, there
has to be an initial check for values outside the range to jump to default otherwise you could get an
error from an invalid access outside of the array’s bounds.

The same program/code in MIPS would look like this:

 1 .data
 2
 3 a_str: .asciiz "Excellent job!\n"
 4 b_str: .asciiz "Good job!\n"
 5 c_str: .asciiz "At least you passed?\n"
 6 d_str: .asciiz "Probably should have dropped it...\n"
 7 f_str: .asciiz "Did you even know you were signed up for the class?\n"
 8
 9 invalid_str: .asciiz "You entered an invalid grade!\n"
10
11 enter_grade: .asciiz "Enter your grade (capital): "
12
13 switch_labels: .word a_label, b_label, c_label, d_label, default_label, f_label
14
15 .text

56

16
17 main:
18
19 li $v0, 4
20 la $a0, enter_grade
21 syscall
22
23 li $v0, 12 # read char
24 syscall
25
26 li $t2, 5 # f is at index 5
27
28 la $t0, switch_labels
29 addi $t1, $v0, -65 # t1 = grade - 'A'
30 blt $t1, $0, default_label # if (grade-'A' < 0) goto default
31 bgt $t1, $t2, default_label # if (grade-'A' > 5) goto default
32
33 sll $t1, $t1, 2 # offset *= 4 (sizeof(word))
34 add $t0, $t0, $t1 # t0 = switch_labels + byte_offset =
 &switch_labels[grade-'A']
35 lw $t0, 0($t0) # load address from jump table
36 jr $t0 # jump to address
37
38 a_label:
39 la $a0, a_str
40 j end_switch
41
42 b_label:
43 la $a0, b_str
44 j end_switch
45
46 c_label:
47 la $a0, c_str
48 j end_switch
49
50 d_label:
51 la $a0, d_str
52 j end_switch
53
54 f_label:
55 la $a0, f_str
56 j end_switch
57
58 default_label:
59 la $a0, invalid_str
60
61
62 end_switch:
63 li $v0, 4
64 syscall
65

57

66 li $v0, 10 # exit
67 syscall

It’s easy to forget that jr does not actually stand for "jump return" or "jump ra," though it’s almost
always used for that purpose. Instead, it stands for "jump register" and we can use it to do the
eqivalent of the computed goto statement in C.

This example probably wasn’t worth making switch style, because the overhead and extra code of
making the table and preparing to jump balanced out or even outweighed the savings of a branch
instruction for every case. However, as the number of options increases, the favor tilts toward
using a jump table like this as long as the range of values isn’t too sparse. If the range of values is in
the 100’s or 1000’s but you only have cases for a dozen or so, then obviously it isn’t worth creating a
table that large only to fill it almost entirely with the default label address.

To reiterate, remember it is not about the magnitude of the actual values you’re looking for, only
the difference between the highest and lowest because high - low + 1 is the size of your table.

Command Line Arguments
Command line arguments, also known as program arguments, or command line parameters, are
strings that are passed to the program on startup. In high level languages like C, they are accessed
through the parameters to the main function (naturally):

 1 #include <stdio.h>
 2
 3 int main(int argc, char** argv)
 4 {
 5 printf("There are %d command line arguments:\n", argc);
 6
 7 for (int i=0; i<argc; i++) {
 8 printf("%s\n", argv[i]);
 9 }
10
11 return 0;
12 }

As you can see, argc contains the number of parameters and argv is an array of those arguments as
C strings. If you run this program you’ll get something like this:

$./args 3 random arguments
There are 4 command line arguments:
./args
3
random
arguments

Notice that the first argument is what you actually typed to invoke the program, so you always have

58

at least one argument.

MIPS works the same way. The number of arguments is in $a0 and an array of strings is in $a1 when
main starts. So the same program in MIPS looks like this:

 1 .data
 2
 3 there_are: .asciiz "There are "
 4 arguments: .asciiz " command line arguments:\n"
 5
 6 .text
 7 main:
 8 move $t0, $a0 # save argc
 9
10 li $v0, 4
11 la $a0, there_are
12 syscall
13
14 move $a0, $t0
15 li $v0, 1 # print int
16 syscall
17
18 li $v0, 4
19 la $a0, arguments
20 syscall
21
22 li $t1, 0 # i = 0
23 j arg_loop_test
24
25 arg_loop:
26 li $v0, 4
27 lw $a0, 0($a1)
28 syscall
29
30 li $v0, 11
31 li $a0, 10 # '\n'
32 syscall
33
34 addi $t1, $t1, 1 # i++
35 addi $a1, $a1, 4 # argv++ ie a1 = &argv[i]
36 arg_loop_test:
37 blt $t1, $t0, arg_loop # while (i < argc)
38
39 li $v0, 10
40 syscall

This program works exactly like the C program when using SPIM:

$ spim -file args.s 3 random arguments

59

SPIM Version 8.0 of January 8, 2010
Copyright 1990-2010, James R. Larus.
All Rights Reserved.
See the file README for a full copyright notice.
Loaded: /usr/lib/spim/exceptions.s
There are 4 command line arguments:
args.s
3
random
arguments

Obviously the commands for SPIM itself are not included but the file name (args.s) takes the place
as the "executable".

Unfortunately, MARS works differently, probably because it’s more GUI focused. It does not pass the
program/file name as the first argument, so you can actually get 0 arguments:

$ java -jar ~/Mars4_5.jar args.s pa 3 random arguments
MARS 4.5 Copyright 2003-2014 Pete Sanderson and Kenneth Vollmar

There are 3 command line arguments:
3
random
arguments

You can see that you have to pass "pa" (for "program arguments") to indicate that the following
strings are arguments. In the GUI, there is an option in "Settings" called "Program arguments
provided to MIPS progam" which if selected will add a text box above the Text Segment for you to
enter in the arguments to be passed.

60

Figure 1. Enable program arguments in MARS GUI

61

Figure 2. Example using program arguments in MARS GUI

Delayed Branches and Delayed Loads
MIPS originally had a 1-instruction delay between when a branch or load was executed, and when
it actually jumped or completed the load. By default, SPIM has both of these turned off but you can
turn them on with the arguments -delayed_branches and -delayed_loads respectively, or use the
-bare which turns on both, as well as disabling pseudoinstructions (ie it simulates the "bare"
machine without any of the niceties). MARS is the same as SPIM in that it defaults to the more user
friendly mode, but you can turn on delayed branches in the settings (but not delayed loads, that
isn’t supported as far as I can tell). From the command line you can turn it on with the db argument

62

and you can turn off pseudoinstructions with np (for the next section).

The only reason you’d probably ever want to do this to yourself is if your professor requires it for
some unknown reason. There is some learning value to seeing how pseudoinstructions are turned
into actual instructions, but there’s absolutely nothing useful to be gained in turning on the delays.

To handle delayed branches, all you have to do is add a nop (No Operation) instruction after every
branch or jump instruction (including jal and jr). The solution is identical for delayed loads, put a
nop after every load instruction.

You could put other instructions there, intsructions that you have above the jumps or loads that
don’t have to occur before. If you were doing a real project on real hardware and were trying to
minimize program size and maximize speed, you would definitely do this (if that hardware had
delayed branches/loads). However, it’s a bad idea for two reasons. First, it takes longer to figure out
which instructions you can move and why, and it makes your program harder to read since you
naturally don’t expect an instruction to occur before the previous one. Second, and more
importantly, it means your program will no longer work if you turn delayed branches/loads off
again. Using a nop means the change is quick, easy, and you can still run it in the simulator’s default
mode if needed.

One final note, and it relates to the following section. Even though nop is supposedly represented by
all 0’s, and MARS supports it even with pseudoinstrutions disabled, SPIM does not support it in bare
mode. This means you have to use some other instruction that has no side effects, like or $0, $0,
$0, which will work as a nop under all conditions and simulators.

No Pseudoinstructions Allowed
Far more common than requiring delayed loads is forbidding pseudoinstructions, either all of
them, or some subset of them. This forces us to explicitly write what actually happens when you
use those pseudoinstructions.

Table 7. Pseudoinstruction Equivalents

Pseudoinstruction Example Use Equivalence

Load Immediate
li $t0, 42 ori $t0, $0, 42

or
addi $t0, $0, 42

Move
move $t0, $t1 or $t0, $0, $t1

or
add $t0, $0, $t1

No Operation
nop # anything with $0 as dest

reg will work, I prefer
or $0, $0, $0

63

Pseudoinstruction Example Use Equivalence

Load Address
la $t0, label # use 0x1001 for MARS

lui $t0, 0x1000
ori $t0, $t0, byte_offset

Branch Less Than
blt $t0, $t1, label # t2 = t0 < t1

slt $t2, $t0, $t1
bne $t2, $0, label

or if you're counting up and
you know they'll be equal,
you can simplify to
bne $t0, $t1, label

Branch Greater Than
bgt $t0, $t1, label # flip order to get >

slt $t2, $t1, $t0
bne $t2, $0, label

Branch Less Than or Equal
ble $t0, $t1, label # test for < and = separately

slt $t2, $t0, $t1
bne $t2, $0, label
beq $t0, $t1, label

or add 1 to change <= to <
use a spare reg if you need
to preserve the original
value
addi $t3, $t1, 1
slt $t2, $t0, $t3
bne $t2, $0, label

Branch Greater Than or
Equal bge $t0, $t1, label # test for opposite

and branch on failure
slt $t2, $t0, $t1
beq $t2, $0, label

You can see how you use the non-pseudoinstructions to match the same behavior, and there’s often
(usually) more than one way. Of all of them, ble is the worst, because what was 1 instruction
becomes 3, and you’ll sometimes need an extra register to hold the "plus 1" value if you still need
the original.

Another thing I should comment on is the la equivalence. The reason it is a pseudoinstruction in

64

the first place is that an address is 32 bits. That’s also the size of a whole instruction. Clearly there’s
no way to represent a whole address and anything else at the same time. The lower left corner of
the greensheet has the actual formats of the 3 different types of instructions and even the jump
format still needs 6 bits for the opcode. This is why lui exists, in order to facilitate getting a full
address into a register by doing it in two halves, 16 + 16. The lower 16 can be placed with addi or ori
after the lui.

That begs the question, what actually goes in the upper half? Well, since we’re dealing with
addresses in the .data section, the upper portion should match the upper part of address of the
.data section. In SPIM the data section starts at 0x10000000 in bare mode. In normal mode it is
0x10010000, but you’d be able to use la in normal mode. However, in MARS it is always 0x10010000,
so you won’t be able to have it work correctly in bare SPIM and MARS without changing that back
and forth.

But what about the lower part of the address? This involves counting the bytes from the top of .data
to the label you want. If all you have is words, halfs, floats, doubles, or space (with a round
number), that’s fairly easy, but the second you have strings between the start and the label you
want, it’s a bit more painful. This is why I recommend putting any string declarations at the bottom
so at least any other globals will have nice even offsets. Also, if you have a bunch of globals, it
doesn’t hurt to count once and put the offsets in comments above each label so you don’t forget. Of
course, none of this matters if you’re allowed to just use la which is true the vast majority of the
time.

Let’s look at a small example. We’ll convert the args.s from above (reproduced here for
convenience) to bare mode:

 1 .data
 2
 3 there_are: .asciiz "There are "
 4 arguments: .asciiz " command line arguments:\n"
 5
 6 .text
 7 main:
 8 move $t0, $a0 # save argc
 9
10 li $v0, 4
11 la $a0, there_are
12 syscall
13
14 move $a0, $t0
15 li $v0, 1 # print int
16 syscall
17
18 li $v0, 4
19 la $a0, arguments
20 syscall
21
22 li $t1, 0 # i = 0
23 j arg_loop_test

65

24
25 arg_loop:
26 li $v0, 4
27 lw $a0, 0($a1)
28 syscall
29
30 li $v0, 11
31 li $a0, 10 # '\n'
32 syscall
33
34 addi $t1, $t1, 1 # i++
35 addi $a1, $a1, 4 # argv++ ie a1 = &argv[i]
36 arg_loop_test:
37 blt $t1, $t0, arg_loop # while (i < argc)
38
39 li $v0, 10
40 syscall

So we need to change the moves,li's, la's, and the the j. after any branches or loads.

 1 # in bare mode the .data section starts at 0x10000000
 2 # without -bare, spim puts it at 0x10010000, so your lui will change
 3 # but if you weren't doing bare you'd probably just be using la
 4
 5 # MARS .data always starts at 0x10010000, whether pseudoinstructions
 6 # or delayed branching are on or not.
 7
 8 .data
 9
10 there_are: .asciiz "There are "
11 arguments: .asciiz " command line arguments:\n"
12
13 # run with spim -bare -file args_bare.s
14
15 .text
16
17 .globl main
18 main:
19 or $t0, $0, $a0 # save argc
20
21 ori $v0, $0, 4
22 lui $a0, 0x1000 # there_are is at beginning of data so just lui, lower
 is 0
23 syscall
24
25 or $a0, $0, $t0
26 ori $v0, $0, 1 # print int
27 syscall
28
29 ori $v0, $0, 4

66

30 lui $a0, 0x1000
31 ori $a0, $a0, 11 # 11 is length in bytes of "There are " 10 chars + '\0'
32 #la $a0, arguments
33 syscall
34
35 ori $t1, $0, 0 # i = 0
36 j arg_loop_test
37 or $0, $0, $0
38
39 arg_loop:
40 ori $v0, $0, 4 # print string for argv[i]
41 lw $a0, 0($a1)
42 or $0, $0, $0 # nop
43 syscall
44
45 ori $v0, $0, 11
46 ori $a0, $0, 10 # '\n'
47 syscall
48
49 addi $t1, $t1, 1 # i++
50 addi $a1, $a1, 4 # argv++ ie a1 = &argv[i]
51 arg_loop_test:
52 bne $t1, $t0, arg_loop # while (i != argc)
53 or $0, $0, $0
54
55 ori $v0, $0, 10
56 syscall

Following the table, you can see the mv became or, the li became ori, we added nop instructions in
the form of or with $0 as the destination, the blt became bne, and lastly the la became lui plus an
ori if necessary for the byte offset. The blt to bne is worth noting, because there’s no reason to do a
complicated transformation if you don’t have to and bne accomplishes the same thing here.

Exercises
You can support the book and purchase the chapter exercise solutions from my store or Leanpub.

1. Convert the exercises from chapter 5 to run in spim -bare mode and/or in MARS with delayed
branches and no pseudoinstructions (java -jar ~/Mars_4.5.jar db np file.s on the command
line).

2. Convert the following C code to MIPS using a jump table (Note in C/C++ enum values start at 0
and go up by one unless the user manually assigns a value, in which case it continues counting
up from there).

 1 enum { STATE0, STATE1, STATE2, STATE3, STATE14 = 14, STATE42 = 42, STATE43,
 STATE44 };
 2
 3

67

https://store.robertwinkler.com/
https://leanpub.com/mipsassemblyprogrammming

 4 int main()
 5 {
 6 int num;
 7 do {
 8 printf("Enter a number between 0 and 50: ");
 9 scanf("%d", &num);
10 } while (num < 0 || num > 50);
11
12 switch (num) {
13 case STATE0:
14 puts("Zilch");
15 break;
16 case STATE1:
17 puts("Uno");
18 break;
19 case STATE2:
20 puts("Dos");
21 break;
22 case STATE3:
23 puts("Tres");
24 break;
25 case STATE14:
26 puts("Catorce");
27 case STATE42:
28 puts("The answer to life, the universe, and everything.");
29 case STATE43:
30 puts("Off by one");
31 case STATE44:
32 puts("4 * 11?");
33 break;
34 }
35
36 puts("Thanks for playing!");
37
38
39 return 0;
40 }

[1] When I find the post I read years ago about how using tabs saves CO2 I’ll put it here, but I’m joking. I use tabs because it makes
sense and there are accessibility reasons too: https://www.reddit.com/r/javascript/comments/c8drjo/
nobody_talks_about_the_real_reason_to_use_tabs/

[2] https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html

68

https://www.reddit.com/r/javascript/comments/c8drjo/nobody_talks_about_the_real_reason_to_use_tabs/
https://www.reddit.com/r/javascript/comments/c8drjo/nobody_talks_about_the_real_reason_to_use_tabs/
https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html

References and Useful Links
• Greensheet

• MARS syscall list

• learnxinyminutes page

• Randolph-Macon College MIPS Reference

• CCSU MIPS Reference

69

https://inst.eecs.berkeley.edu/~cs61c/resources/MIPS_Green_Sheet.pdf
https://dpetersanderson.github.io/Help/SyscallHelp.html
https://learnxinyminutes.com/docs/mips/
https://courses.necaise.org/MIPSReference/MIPSReference
https://chortle.ccsu.edu/AssemblyTutorial/index.html

Supporters

Corporate

MIPS Assembly Programming Robert Winkler supporter3

Platinum

supporter4 supporter5 PortableGL

supporter7

Gold

sdl_img Nick, Columbia CS Student Dr. Michael Rogers
Assistant Professor
Computer Science
University of Wisconsin
Oshkosh

supporter11 supporter12 supporter13

Silver

Atlas Gong
https://cs.mcgill.ca/~agong2

supporter15 supporter16

supporter17 supporter18 supporter19

supporter20

Bronze

CCSF cs student 0x01 supporter22 supporter23

supporter24 supporter25 supporter26

supporter27 supporter28 supporter29

supporter30

70

http://www.robertwinkler.com/projects/mips_book/
http://www.robertwinkler.com/
http://portablegl.com/
http://www.robertwinkler.com/projects/sdl_img.html
https://cs.mcgill.ca/~agong2
https://www.ccsf.edu/academics/schools/stem/computer-science-department

	MIPS Assembly Programmming
	Table of Contents
	Info
	Dedication
	Chapter 0: Hello World
	Prereqs
	System Setup
	Handy Resources
	Hello World
	Building and Running
	Conclusion
	Exercises

	Chapter 1: Data
	Arrays
	Exercises

	Chapter 2: System Calls
	Examples
	Exercises

	Chapter 3: Branches and Logic
	Practice
	Conclusion
	Exercises

	Chapter 4: Loops
	Looping Through Arrays
	Conclusion
	Exercises

	Chapter 5: Functions and the MIPS Calling Convention
	Functions
	The Convention
	Conclusion
	Exercises

	Chapter 6: Floating Point Types
	Floating Point Registers and Instructions
	Practice
	Getting Floating Point Literals
	Branching
	Functions
	Conclusion
	Exercises

	Chapter 7: Tips and Tricks
	Formatting
	Misc. General Tips
	Constants
	Macros
	Switch-Case Statements
	Command Line Arguments
	Delayed Branches and Delayed Loads
	No Pseudoinstructions Allowed
	Exercises

	References and Useful Links
	Supporters
	Corporate

